The effect of parathyroid hormone on adenyl cyclase in rat kidney

1968 ◽  
Vol 158 (3) ◽  
pp. 484-486 ◽  
Author(s):  
Tomáš Douša ◽  
Ivan Rychlík
1980 ◽  
Vol 93 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Naokazu Nagata ◽  
Yuriko Ono ◽  
Narimichi Kimura

Abstract. The interaction between parathyroid hormone (PTH) and prostaglandin E1 (PGE1) in influencing cyclic AMP metabolism in rat renal cortical tissue was examined. PTH and PGE1 stimulated additively the adenylate cyclase activity in the homogenate of the tissue. Both PTH and PGE1 enhanced the level of cyclic AMP in the incubated renal cortical tissue, but the effect of their simultaneous addition did not exceed the effect induced by PTH alone. Cyclic AMP accumulated in the incubation medium by stimulation by PTH was decreased by the simultaneous addition of PGE1. When the tissue was pre-incubated for 30 min with 2 to 10 μg/ml of PGE1, the magnitude of the increase of cyclic AMP caused by PTH subsequently added was lessened. However, the response to PTH of adenylate cyclase preparation obtained from the homogenate of PGE1-pre-treated tissue was not decreased. When first PTH was added to the incubating renal cortical tissue, the subsequent addition of PGE1 accelerated the decrease of cyclic AMP content in the tissue and decreased the amount of cyclic AMP released from the tissue. The interaction of PTH and PGE1 on cyclic AMP metabolism in the renal cortical tissue was in contrast to that seen in newborn rat calvaria where PGE1 and PTH acted additively in enhancing the level of cyclic AMP.


Science ◽  
1968 ◽  
Vol 159 (3814) ◽  
pp. 545-547 ◽  
Author(s):  
L. R. Chase ◽  
G. D. Aurbach

1990 ◽  
Vol 126 (3) ◽  
pp. 403-408 ◽  
Author(s):  
A. G. Ellis ◽  
W. R. Adam ◽  
T. J. Martin

ABSTRACT The isolated perfused rat kidney was used to study the effects of amino-terminal fragments of human parathyroid hormone, hPTH(1–34), bovine parathyroid hormone, bPTH(1–84) and of PTH-related proteins, PTHrP(1–34), PTHrP(1–84), PTHrP(1–108) and PTHrP(1–141) on urinary bicarbonate excretion. PTHrP(1–34) (7 nmol/l), bPTH(1–84) (5·5 nmol/l) and hPTH(1–34) (7 nmol/l) had similar effects in increasing bicarbonate excretion with respect to the control. At lower concentrations (0·7 nmol/l) all PTHrP components, but not hPTH(1–34) or bPTH(1–84) increased bicarbonate excretion significantly. Infusions of PTHrP(1–108) and PTHrP(1–141) at 0·7 nmol/l, while associated with a rise in urinary bicarbonate concentration and excretion during the early stages of perfusion, produced a sharp decline in bicarbonate concentration and excretion in the latter part of perfusion. The different peptides produced no significant differences in glomerular filtration rate, fractional excretion of sodium or urine volume. The absence of substantial differences between the effects of hPTH(1–34) and PTHrP(1–34) are as noted in previous studies. The differences between PTHrP(1–108)/PTHrP(1–141) and PTHrP(1–34) demonstrated here are consistent with (1) the clinical manifestations of acidosis in hyperparathyroidism and alkalosis in humoral hypercalcaemia of malignancy, and (2) an independent action of a component of PTHrP beyond amino acids 1–34. Journal of Endocrinology (1990) 126, 403–408


1969 ◽  
Vol 111 (4) ◽  
pp. 509-514 ◽  
Author(s):  
T. J. Martin ◽  
R. A. Melick ◽  
M. de Luise

A study was made of the enzymic degradation of 125I-labelled parathyroid hormone by rat kidney microsomes. Incubation with microsomes resulted in rapid destruction of the labelled hormone. The microsomal factor was not separable by dialysis, and the reaction was favoured by pH values in the physiological range. Velocity of the reaction varied directly as the substrate concentration, and additional crude parathyroid hormone (trichloroacetic acid-precipitated, 3·68mg./ml.) inhibited destruction of labelled hormone. There was much less inhibition with added trichloroacetic acid-precipitated calcitonin (3·92mg./ml.) and virtually none with added pig insulin (3·80mg./ml.). Gel filtration of control medium on P6 (Bio-Gel) yielded one radioactive peak at the void volume. After incubation with microsomes three further peaks were obtained on gel filtration. Only the void-volume peak contained intact 125I-labelled parathyroid hormone, indicating that the microsomal enzyme degraded labelled hormone to a number of smaller fragments.


1976 ◽  
Vol 231 (4) ◽  
pp. 1140-1146 ◽  
Author(s):  
JA Arruda ◽  
JM Richardson ◽  
JA Wolfson ◽  
L Nascimento ◽  
DR Rademacher ◽  
...  

The phosphaturic effect of parathyroid hormone (PTH), cyclic adenosine monophosphate (cAMP), acetazolamide (Az), and HCO3 loading was studied in normal, thyroparathyroidectomized (TPTX), and Li-treated dogs. PTH administration to normal animals markedly increased fractional excretion (F) of PO4 but had a blunted effect on FPO4 in the Li-treated animals. Cyclic AMP likewise markedly increased FPO4 in the normal animals but had a markedly blunted effect in the Li-treated animals. Az led to a significant increase in FNa, FHCO3, and FPO4 in the normal animals. In the Li-treated dogs, Az induced a significant natriuresis and bicarbonaturia but failed to increase phosphaturia. HCO3 loading in normal dogs caused a significant phosphaturia while having little effect on FPO4 in Li-treated dogs. HCO3 loading to TPTX dogs was associated with a lower FPO4 as compared to normal HCO3-loaded animals. These data suggest that Li administration not only blocks the adenyl cyclase-cAMP system in the renal cortex, but it may also interfere with a step distal to the formation of cAMP, since the phosphaturic effect of both PTH and cAMP was markedly diminished in Li-treated animals.


1973 ◽  
Vol 7 (11) ◽  
pp. 878-882 ◽  
Author(s):  
Louie G Linarelli ◽  
John Bobik ◽  
Caroline Bobik

Sign in / Sign up

Export Citation Format

Share Document