On the solution of the Boltzmann equation for Maxwellian molecules

1982 ◽  
Vol 111 (1-2) ◽  
pp. 288-300 ◽  
Author(s):  
Robert M. Ziff ◽  
G. Stell ◽  
P.T. Cummings
1996 ◽  
Vol 06 (01) ◽  
pp. 137-147 ◽  
Author(s):  
JENS STRUCKMEIER ◽  
KONRAD STEINER

In the standard approach particle methods for the Boltzmann equation are obtained using an explicit time discretization of the spatially homogeneous Boltzmann equation. This kind of discretization leads to a restriction on the discretization parameter as well as on the differential cross-section in the case of the general Boltzmann equation. Recently, construction of an implicit particle scheme for the Boltzmann equation with Maxwellian molecules was shown. This paper combines both approaches using a linear combination of explicit and implicit discretizations. It is shown that the new method leads to a second-order particle method when using an equiweighting of explicit and implicit discretization.


Author(s):  
Olivier Darrigol

This chapter covers Boltzmann’s writings about the Boltzmann equation and the H theorem in the period 1872–1875, through which he succeeded in deriving the irreversible evolution of the distribution of molecular velocities in a dilute gas toward Maxwell’s distribution. Boltzmann also used his equation to improve on Maxwell’s theory of transport phenomena (viscosity, diffusion, and heat conduction). The bulky memoir of 1872 and the eponymous equation probably are Boltzmann’s most famous achievements. Despite the now often obsolete ways of demonstration, despite the lengthiness of the arguments, and despite hidden difficulties in the foundations, Boltzmann there displayed his constructive skills at their best.


Sign in / Sign up

Export Citation Format

Share Document