h theorem
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1371
Author(s):  
Aurélien Drezet

In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution ρ(x) of finding a particle at point x to the Born probability law |Ψ(x)|2. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Max Jauregui ◽  
Anna L. F. Lucchi ◽  
Jean H. Y. Passos ◽  
Renio S. Mendes

2021 ◽  
Vol 184 (3) ◽  
Author(s):  
J. Haack ◽  
C. Hauck ◽  
C. Klingenberg ◽  
M. Pirner ◽  
S. Warnecke

AbstractWe derive a multi-species BGK model with velocity-dependent collision frequency for a non-reactive, multi-component gas mixture. The model is derived by minimizing a weighted entropy under the constraint that the number of particles of each species, total momentum, and total energy are conserved. We prove that this minimization problem admits a unique solution for very general collision frequencies. Moreover, we prove that the model satisfies an H-Theorem and characterize the form of equilibrium.


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
Riccardo N. Iorio ◽  
Eero Hirvijoki

This paper proposes a metric bracket for representing Coulomb collisions in the so-called guiding-centre Vlasov–Maxwell–Landau model. The bracket is manufactured to preserve the same energy and momentum functionals as does the Vlasov–Maxwell part and to simultaneously satisfy a revised version of the H-theorem, where the equilibrium distributions with respect to collisional dynamics are identified as Maxwellians. This is achieved by exploiting the special projective nature of the Landau collision operator and the simple form of the system's momentum functional. A discussion regarding a possible extension of the results to electromagnetic drift-kinetic and gyrokinetic systems is included. We anticipate that energy conservation and entropy dissipation can always be manufactured whereas guaranteeing momentum conservation is a delicate matter yet to be resolved.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 993
Author(s):  
Oleg Ilyin

In this paper, we consider the development of the two-dimensional discrete velocity Boltzmann model on a nine-velocity lattice. Compared to the conventional lattice Boltzmann approach for the present model, the collision rules for the interacting particles are formulated explicitly. The collisions are tailored in such a way that mass, momentum and energy are conserved and the H-theorem is fulfilled. By applying the Chapman–Enskog expansion, we show that the model recovers quasi-incompressible hydrodynamic equations for small Mach number limit and we derive the closed expression for the viscosity, depending on the collision cross-sections. In addition, the numerical implementation of the model with the on-lattice streaming and local collision step is proposed. As test problems, the shear wave decay and Taylor–Green vortex are considered, and a comparison of the numerical simulations with the analytical solutions is presented.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 366
Author(s):  
Carlos Medel-Portugal ◽  
Juan Manuel Solano-Altamirano ◽  
José Luis E. Carrillo-Estrada

We propose a novel framework to describe the time-evolution of dilute classical and quantum gases, initially out of equilibrium and with spatial inhomogeneities, towards equilibrium. Briefly, we divide the system into small cells and consider the local equilibrium hypothesis. We subsequently define a global functional that is the sum of cell H-functionals. Each cell functional recovers the corresponding Maxwell–Boltzmann, Fermi–Dirac, or Bose–Einstein distribution function, depending on the classical or quantum nature of the gas. The time-evolution of the system is described by the relationship dH/dt≤0, and the equality condition occurs if the system is in the equilibrium state. Via the variational method, proof of the previous relationship, which might be an extension of the H-theorem for inhomogeneous systems, is presented for both classical and quantum gases. Furthermore, the H-functionals are in agreement with the correspondence principle. We discuss how the H-functionals can be identified with the system’s entropy and analyze the relaxation processes of out-of-equilibrium systems.


2021 ◽  
pp. 127315
Author(s):  
Eiichirou Kawamori
Keyword(s):  

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 430 ◽  
Author(s):  
Arieh Ben-Naim

The idea that entropy is associated with the “arrow of time” has its roots in Clausius’s statement on the Second Law: “Entropy of the Universe always increases.” However, the explicit association of the entropy with time’s arrow arises from Eddington. In this article, we start with a brief review of the idea that the “increase in entropy” is somehow associated with the direction in which time increases. Then, we examine three different, but equivalent definitions of entropy. We find that none of these definitions indicate any hint of a relationship between entropy and time. We can, therefore, conclude that entropy is a timeless quantity. We also discuss the reasons as to why some scientists went astray in associating entropy with time’s arrow. Finally, we shall discuss Boltzmann’s H-Theorem, which is viewed by many as a proof of the Second Law of Thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document