Stimulation of Beef Brain Transport (Na,K) Adenosine Triphosphatase by Catecholamines

Abstracts ◽  
1977 ◽  
pp. 366
Author(s):  
Terry D. Hexum
1965 ◽  
Vol 240 (5) ◽  
pp. 2181-2187
Author(s):  
Robert Gibbs ◽  
Patricia M. Roddy ◽  
Elwood Titus

1963 ◽  
Vol 238 (2) ◽  
pp. 836-842
Author(s):  
D.D. Fanestil ◽  
A Baird Hastings ◽  
Theodore A. Mahowald

1993 ◽  
Vol 64 (3) ◽  
pp. 813-823 ◽  
Author(s):  
D.L. Miller ◽  
J.C. Olson ◽  
J.W. Parce ◽  
J.C. Owicki

1968 ◽  
Vol 109 (5) ◽  
pp. 921-928 ◽  
Author(s):  
J. M. Haslam ◽  
D. E. Griffiths

1. The rates of translocation of oxaloacetate and l-malate into rat liver mitochondria were measured by a direct spectrophotometric assay. 2. Penetration obeyed Michaelis–Menten kinetics, and apparent Km values were 40μm for oxaloacetate and 0·13mm for l-malate. 3. Arrhenius plots of the temperature-dependence of rates of penetration gave activation energies of +10kcal./mole for oxaloacetate and +8kcal./mole for l-malate. 4. The translocation of both oxaloacetate and l-malate was competitively inhibited by d-malate, succinate, malonate, meso-tartrate, maleate and citraconate. The Ki values of these inhibitors were similar for the penetration of both oxaloacetate and l-malate. 5. Rates of penetration were stimulated by NNN′N′-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate under aerobic conditions or by ATP under anaerobic conditions. 6. The energy-dependent stimulation of translocation was abolished by uncouplers of oxidative phosphorylation. Oligomycin A, aurovertin, octyl-guanidine and atractyloside prevented the stimulation by ATP, but did not inhibit the stimulation by NNN′N′-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate. 7. Mitochondria prepared in the presence of ethylene-dioxybis(ethyleneamino)tetra-acetic acid did not exhibit the energy-dependent translocation, but this could be restored by the addition of 50μm-calcium chloride. 8. Valinomycin or gramicidin plus potassium chloride enhanced the energy-dependent translocation of oxaloacetate and l-malate. 9. Addition of oxaloacetate stimulated the adenosine triphosphatase activity of the mitochondria, and the ratio of ‘extra’ oxaloacetate translocation to ‘extra’ adenosine triphosphatase activity was 1·6:1. 10. Possible mechanisms for the energy-dependent entry of oxaloacetate and l-malate into mitochondria are discussed in relation to the above results.


1980 ◽  
Vol 19 (9) ◽  
pp. 2021 ◽  
Author(s):  
David J. Ballantyne ◽  
Mary W. Black

Sign in / Sign up

Export Citation Format

Share Document