Climate Change and Sea Level Rise in the Mekong Delta

Author(s):  
To Quang Toan
2015 ◽  
Vol 127 ◽  
pp. 22-33 ◽  
Author(s):  
Nguyen Van Manh ◽  
Nguyen Viet Dung ◽  
Nguyen Nghia Hung ◽  
Matti Kummu ◽  
Bruno Merz ◽  
...  

2013 ◽  
Vol 16 (1) ◽  
pp. 32-39
Author(s):  
Quan Hong Nguyen

Mapping flood inundation can be done by different methods, of which GIS analysis and flood modeling can be considered as the most popular ones. The modeling approach often requires more data but produce more detail results comparing to the GIS. Based on the assessment of current applied methods for building flood inundation map in the Mekong delta provinces in general and Long An in particular as well as based on some recent results of using GIS, 1 D ISIS model and 1-2D Mike Flood model applied in Long An province, the author show advantages as well as disadvantages of each methods and especially the results’ confidence. As the result, the author presents some challenges in mapping flood inundation maps under climate change and sea level rise. Integrating hydraulic construction (e.g. dyke, sluice, storage areas) and adaptation measures in the current and future in the analysis are typical challenges.


The Holocene ◽  
2021 ◽  
pp. 095968362110482
Author(s):  
Kelvin W Ramsey ◽  
Jaime L. Tomlinson ◽  
C. Robin Mattheus

Radiocarbon dates from 176 sites along the Delmarva Peninsula record the timing of deposition and sea-level rise, and non-marine wetland deposition. The dates provide confirmation of the boundaries of the Holocene subepochs (e.g. “early-middle-late” of Walker et al.) in the mid-Atlantic of eastern North America. These data record initial sea-level rise in the early Holocene, followed by a high rate of rise at the transition to the middle Holocene at 8.2 ka, and a leveling off and decrease in the late-Holocene. The dates, coupled to local and regional climate (pollen) records and fluvial activity, allow regional subdivision of the Holocene into six depositional and climate phases. Phase A (>10 ka) is the end of periglacial activity and transition of cold/cool climate to a warmer early Holocene. Phase B (10.2–8.2 ka) records rise of sea level in the region, a transition to Pinus-dominated forest, and decreased non-marine deposition on the uplands. Phase C (8.2–5.6 ka) shows rapid rates of sea-level rise, expansion of estuaries, and a decrease in non-marine deposition with cool and dry climate. Phase D (5.6–4.2 ka) is a time of high rates of sea-level rise, expanding estuaries, and dry and cool climate; the Atlantic shoreline transgressed rapidly and there was little to no deposition on the uplands. Phase E (4.2–1.1 ka) is a time of lowering sea-level rise rates, Atlantic shorelines nearing their present position, and marine shoal deposition; widespread non-marine deposition resumed with a wetter and warmer climate. Phase F (1.1 ka-present) incorporates the Medieval Climate Anomaly and European settlement on the Delmarva Peninsula. Chronology of depositional phases and coastal changes related to sea-level rise is useful for archeological studies of human occupation in relation to climate change in eastern North America, and provides an important dataset for future regional and global sea-level reconstructions.


Sign in / Sign up

Export Citation Format

Share Document