adaptation measures
Recently Published Documents


TOTAL DOCUMENTS

1007
(FIVE YEARS 560)

H-INDEX

30
(FIVE YEARS 7)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 140
Author(s):  
Muxi Cheng ◽  
Bruce McCarl ◽  
Chengcheng Fei

Globally, the climate is changing, and this has implications for livestock. Climate affects livestock growth rates, milk and egg production, reproductive performance, morbidity, and mortality, along with feed supply. Simultaneously, livestock is a climate change driver, generating 14.5% of total anthropogenic Greenhouse Gas (GHG) emissions. Herein, we review the literature addressing climate change and livestock, covering impacts, emissions, adaptation possibilities, and mitigation strategies. While the existing literature principally focuses on ruminants, we extended the scope to include non-ruminants. We found that livestock are affected by climate change and do enhance climate change through emissions but that there are adaptation and mitigation actions that can limit the effects of climate change. We also suggest some research directions and especially find the need for work in developing country settings. In the context of climate change, adaptation measures are pivotal to sustaining the growing demand for livestock products, but often their relevance depends on local conditions. Furthermore, mitigation is key to limiting the future extent of climate change and there are a number of possible strategies.


Forecasting ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 95-125
Author(s):  
Andrew C. W. Leung ◽  
William A. Gough ◽  
Tanzina Mohsin

The impact of climate change on soil temperatures at Kuujjuaq, Quebec in northern Canada is assessed. First, long-term historical soil temperature records (1967–1995) are statistically analyzed to provide a climatological baseline for soils at 5 to 150 cm depths. Next, the nature of the relationship between atmospheric variables and soil temperature are determined using a statistical downscaling model (SDSM) and National Centers for Environmental Prediction (NCEP), a climatological data set. SDSM was found to replicate historic soil temperatures well and used to project soil temperatures for the remainder of the century using climate model output Canadian Second Generation Earth System Model (CanESM2). Three Representative Concentration Pathway scenarios (RCP 2.6, 4.5 and 8.5) were used from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). This study found that the soil temperature at this location may warm at 0.9 to 1.2 °C per decade at various depths. Annual soil temperatures at all depths are projected to rise to above 0 °C for the 1997–2026 period for all climate scenarios. The melting soil poses a hazard to the airport infrastructure and will require adaptation measures.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 512
Author(s):  
Andrew Wright ◽  
Eduardas Venskunas

The global climate is warming rapidly, with increasing frequency of severe events including heatwaves. Building insulation standards are improving to reduce emissions, but this can also lead to more overheating. Historically, UK house designers have not included adaptation measures to limit this. Most studies of the problem have had limited geographical or future climate scope. This study considers the comfort performance of a small modern house, in detached, semi-detached, and terrace (row) forms, but otherwise identical. Overheating is evaluated according to established criteria, including night-time bedroom hours over 26 °C. Simulations are carried out using median future weather years for current, 2030s, 2050s, and 2080s climates under medium- and high-emission scenarios for 14 regions of the UK. The results show a very large increase in overheating by the 2080s in all regions. With solar shading and natural ventilation, overheating is reduced considerably, maintaining comfort in most northern regions in the 2050s and a few northern regions in the 2080s. Differences between medium and high emissions are generally less than between different decades. Terraced (row) houses consistently overheat slightly more than semi-detached, with detached showing the least overheating.


2022 ◽  
Author(s):  
Anni Vehola ◽  
Elias Hurmekoski ◽  
Katja Lähtinen ◽  
Enni Ruokamo ◽  
Anders Roos ◽  
...  

Abstract Climate change places great pressure on the construction sector to decrease its greenhouse gas emissions and to create solutions that perform well in changing weather conditions. In the urbanizing world, wood construction has been identified as one of the opportunities for mitigating these emissions. Our study explores citizen opinions on wood usage as a building material under expected mitigation and adaptation measures aimed at a changing climate and extreme weather events. The data are founded on an internet-based survey material collected from a consumer panel from Finland and Sweden during May–June 2021, with a total of 2015 responses. By employing exploratory factor analysis, we identified similar belief structures for the two countries, consisting of both positive and negative views on wood construction. In linear regressions for predicting these opinions, the perceived seriousness of climate change was found to increase positive views on wood construction but was insignificant for negative views. Both in Finland and Sweden, higher familiarity with wooden multistory construction was found to connect with more positive opinions on the potential of wood in building, e.g., due to carbon storage properties and material attributes. Our findings underline the potential of wood material use as one avenue of climate change adaptation in the built environment. Future research should study how citizens’ concerns for extreme weather events affect their future material preferences in their everyday living environments, also beyond the Nordic region.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Robert Kalbarczyk ◽  
Eliza Kalbarczyk

Deficient precipitation (dPr) in the growing season, especially in critical periods, affects plant condition and determines the quality and quantity of obtained yields. Knowledge about the variability and distribution of dPr is essential to mitigate its effect on agricultural soils and on crop and livestock production. The goal of the work is to determine the spatial and temporal distribution of spring precipitation deficiency and also to indicate the zones of risk and variability of its occurrence in Poland. It was assumed that dPr occurred when total monthly precipitation in a given year accounted for ≤75% of the total multi-year mean (1951–2018). In the spring season, the multi-year mean of the area covered by deficient precipitation (ACDP) amounted to 33% and fluctuated between approximately 31% in May and approximately 35% in March. The study distinguished four zones in Poland that vary in terms of the risk and variability of spring precipitation deficiency. The obtained results may be used, for example, to assess the needs for irrigation in the changing climate conditions, to model the growing season and yields of cultivated plants, and to select adaptation measures for agriculture in response to climate change.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12795
Author(s):  
Ganesh Pant ◽  
Tek Maraseni ◽  
Armando Apan ◽  
Benjamin L. Allen

Climate change has started impacting species, ecosystems, genetic diversity within species, and ecological interactions and is thus a serious threat to conserving biodiversity globally. In the absence of adequate adaptation measures, biodiversity may continue to decline, and many species will possibly become extinct. Given that global temperature continues to increase, climate change adaptation has emerged as an overarching framework for conservation planning. We identified both ongoing and probable climate change adaptation actions for greater one-horned rhinoceros conservation in Nepal through a combination of literature review, key informant surveys (n = 53), focus group discussions (n = 37) and expert consultation (n = 9), and prioritised the identified adaptation actions through stakeholder consultation (n = 17). The majority of key informants (>80%) reported that climate change has been impacting rhinoceros, and more than 65% of them believe that rhinoceros habitat suitability in Nepal has been shifting westwards. Despite these perceived risks, climate change impacts have not been incorporated well into formal conservation planning for rhinoceros. Out of 20 identified adaptation actions under nine adaptation strategies, identifying and protecting climate refugia, restoring the existing habitats through wetland and grassland management, creating artificial highlands in floodplains to provide rhinoceros with refuge during severe floods, and translocating them to other suitable habitats received higher priority. These adaptation actions may contribute to reducing the vulnerability of rhinoceros to the likely impacts of climate change. This study is the first of its kind in Nepal and is expected to provide a guideline to align ongoing conservation measures into climate change adaptation planning for rhinoceros. Further, we emphasise the need to integrating likely climate change impacts while planning for rhinoceros conservation and initiating experimental research and monitoring programs to better inform adaptation planning in the future.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 354
Author(s):  
Ludovica Maria Campagna ◽  
Francesco Fiorito

The body of literature on climate change impacts on building energy consumption is rising, driven by the urgency to implement adaptation measures. Nevertheless, the multitude of prediction methodologies, future scenarios, as well as climate zones investigated, results in a wide range of expected changes. For these reasons, the present review aims to map climate change impacts on building energy consumption from a quantitative perspective and to identify potential relationships between energy variation and a series of variables that could affect them, including heating and cooling degree-days (HDDs and CDDs), reference period, future time slices and IPCC emission scenarios, by means of statistical techniques. In addition, an overview of the main characteristics of the studies related to locations investigated, building types and methodological approaches are given. To sum up, global warming leads to: (i) decrease in heating consumptions; (ii) increase in cooling consumption; (iii) growth in total consumptions, with notable differences between climate zones. No strong correlation between the parameters was found, although a moderate linear correlation was identified between heating variation and HDDs, and total variation and HDDs. The great variability of the collected data demonstrates the importance of increasing specific impact studies, required to identify appropriate adaptation strategies.


2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Arun Rana ◽  
Qinhan Zhu ◽  
Annette Detken ◽  
Karina Whalley ◽  
Christelle Castet

AbstractClimate change is presenting an ongoing and eminent threat to various regions, communities and infrastructure worldwide. In this study, the current and future climate impacts faced by Viet Nam due to Tropical Cyclones (TCs), specifically wind and surge, are evaluated, and different adaptation measures to manage this risk are appraised. The level of wind and storm surge risk was assessed focusing on three categories of assets: residential houses, agriculture, and people. The expected damage to these assets was then evaluated based on their exposure to the hazard under current and future climate scenarios. Physical adaptation measures such as mangroves, sea dykes, and gabions, and financial adaptation measures such as risk transfer via insurance were applied to the expected future risk and evaluated based on a socio-economic cost–benefit analysis. The output will give decision-makers the ability to make more informed decisions, prioritize the most cost-effective adaptation measures and increase physical and financial resilience. The results indicated significant TC exposure in future climate scenarios due to economic development and climate change that almost doubles the current expected damage. Surge-related damage was found to be many times higher than wind damage, and houses had more exposure (value in total) than agriculture on a national scale. The physical adaptation measures are successful in significantly reducing the future wind and especially surge risk and would form a resilient strategy along with risk transfer for managing TC risks in the region.


Sign in / Sign up

Export Citation Format

Share Document