Local bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations

2009 ◽  
Vol 215 (1) ◽  
pp. 314-323 ◽  
Author(s):  
A. Algaba ◽  
C. García ◽  
M. Reyes
Author(s):  
A. A. Hryn ◽  
S. V. Rudzevich

For real autonomous systems of differential equations with continuously differentiable right-hand sides, the problem of detecting the exact number and localization of the second-kind limit cycles on the cylinder is considered. To solve this problem in the absence of equilibria of the system on the cylinder, we have developed our previously proposed ways consisting in a sequential two-step application of the Dulac – Cherkas test or the Dulac test. Additionally, a new way has been worked out using the generalization of the Dulac – Cherkas or Dulac test at the second step, where the requirement of constant sign for divergence is replaced by the transversality condition of the curves on which the divergence vanishes. With the help of the developed ways, closed transversal curves are found that divide the cylinder into subdomains surrounding it, in each of which the system has exactly one second-kind limit cycle.The practical efficiency of the mentioned ways is demonstrated by the example of a pendulum-type system, for which, in the absence of equilibria, the existence of exactly three second-kind limit cycles on the entire phase cylinder is proved.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Regilene D. S. Oliveira ◽  
Iván Sánchez-Sánchez ◽  
Joan Torregrosa

AbstractThe present work introduces the problem of simultaneous bifurcation of limit cycles and critical periods for a system of polynomial differential equations in the plane. The simultaneity concept is defined, as well as the idea of bi-weakness in the return map and the period function. Together with the classical methods, we present an approach which uses the Lie bracket to address the simultaneity in some cases. This approach is used to find the bi-weakness of cubic and quartic Liénard systems, the general quadratic family, and the linear plus cubic homogeneous family. We finish with an illustrative example by solving the problem of simultaneous bifurcation of limit cycles and critical periods for the cubic Liénard family.


2013 ◽  
Vol 1 (05) ◽  
pp. 58-65
Author(s):  
Yunona Rinatovna Krakhmaleva ◽  
◽  
Gulzhan Kadyrkhanovna Dzhanabayeva ◽  

1993 ◽  
Vol 45 (10) ◽  
pp. 1598-1608
Author(s):  
A. M. Samoilenko ◽  
Yu. V. Teplinskii

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1467
Author(s):  
Muminjon Tukhtasinov ◽  
Gafurjan Ibragimov ◽  
Sarvinoz Kuchkarova ◽  
Risman Mat Hasim

A pursuit differential game described by an infinite system of 2-systems is studied in Hilbert space l2. Geometric constraints are imposed on control parameters of pursuer and evader. The purpose of pursuer is to bring the state of the system to the origin of the Hilbert space l2 and the evader tries to prevent this. Differential game is completed if the state of the system reaches the origin of l2. The problem is to find a guaranteed pursuit and evasion times. We give an equation for the guaranteed pursuit time and propose an explicit strategy for the pursuer. Additionally, a guaranteed evasion time is found.


Sign in / Sign up

Export Citation Format

Share Document