Some efficient derivative free methods with memory for solving nonlinear equations

2012 ◽  
Vol 219 (2) ◽  
pp. 699-707 ◽  
Author(s):  
Janak Raj Sharma ◽  
Rangan K. Guha ◽  
Puneet Gupta
2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
J. P. Jaiswal

The present paper is devoted to the improvement of theR-order convergence of with memory derivative free methods presented by Lotfi et al. (2014) without doing any new evaluation. To achieve this aim one more self-accelerating parameter is inserted, which is calculated with the help of Newton’s interpolatory polynomial. First theoretically it is proved that theR-order of convergence of the proposed schemes is increased from 6 to 7 and 12 to 14, respectively, without adding any extra evaluation. Smooth as well as nonsmooth examples are discussed to confirm theoretical result and superiority of the proposed schemes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
T. Lotfi ◽  
K. Mahdiani ◽  
Z. Noori ◽  
F. Khaksar Haghani ◽  
S. Shateyi

A class of derivative-free methods without memory for approximating a simple zero of a nonlinear equation is presented. The proposed class uses four function evaluations per iteration with convergence order eight. Therefore, it is an optimal three-step scheme without memory based on Kung-Traub conjecture. Moreover, the proposed class has an accelerator parameter with the property that it can increase the convergence rate from eight to twelve without any new functional evaluations. Thus, we construct a with memory method that increases considerably efficiency index from81/4≈1.681to121/4≈1.861. Illustrations are also included to support the underlying theory.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
M. Sharifi ◽  
S. Karimi Vanani ◽  
F. Khaksar Haghani ◽  
M. Arab ◽  
S. Shateyi

The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear equations. It is proved that the proposed method possesses higherR-order of convergence using the same number of functional evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme.


2011 ◽  
Author(s):  
Alicia Cordero ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa ◽  
Theodore E. Simos ◽  
...  

2011 ◽  
Vol 5 (2) ◽  
pp. 298-317 ◽  
Author(s):  
Miodrag Petkovic ◽  
Jovana Dzunic ◽  
Ljiljana Petkovic

An efficient family of two-point derivative free methods with memory for solving nonlinear equations is presented. It is proved that the convergence order of the proposed family is increased from 4 to at least 2 + ?6 ? 4.45, 5, 1/2 (5 + ?33) ? 5.37 and 6, depending on the accelerating technique. The increase of convergence order is attained using a suitable accelerating technique by varying a free parameter in each iteration. The improvement of convergence rate is achieved without any additional function evaluations meaning that the proposed methods with memory are very efficient. Moreover, the presented methods are more efficient than all existing methods known in literature in the class of two-point methods and three-point methods of optimal order eight. Numerical examples and the comparison with the existing two-point methods are included to confirm theoretical results and high computational efficiency. 2010 Mathematics Subject Classification. 65H05


Author(s):  
M.S.M. Bahgat ◽  
M.A. Hafiz

In this paper, a family of derivative-free methods of cubic convergence for solving nonlinear equations is suggested. In the proposed methods, several linear combinations of divided differences are used in order to get a good estimation of the derivative of the given function at the different steps of the iteration. The efficiency indices of the members of this family are equal to 1.442. The convergence and error analysis are given. Also, numerical examples are used to show the performance of the presented methods and to compare with other derivative-free methods. And, were applied these methods on smooth and nonsmooth equations.


Sign in / Sign up

Export Citation Format

Share Document