scholarly journals Solving Nonsmooth Equations Using Derivative-Free Methods

Author(s):  
M.S.M. Bahgat ◽  
M.A. Hafiz

In this paper, a family of derivative-free methods of cubic convergence for solving nonlinear equations is suggested. In the proposed methods, several linear combinations of divided differences are used in order to get a good estimation of the derivative of the given function at the different steps of the iteration. The efficiency indices of the members of this family are equal to 1.442. The convergence and error analysis are given. Also, numerical examples are used to show the performance of the presented methods and to compare with other derivative-free methods. And, were applied these methods on smooth and nonsmooth equations.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Alicia Cordero ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa

A family of derivative-free methods of seventh-order convergence for solving nonlinear equations is suggested. In the proposed methods, several linear combinations of divided differences are used in order to get a good estimation of the derivative of the given function at the different steps of the iteration. The efficiency indices of the members of this family are equal to 1.6266. Also, numerical examples are used to show the performance of the presented methods, on smooth and nonsmooth equations, and to compare with other derivative-free methods, including some optimal fourth-order ones, in the sense of Kung-Traub’s conjecture.


2011 ◽  
Author(s):  
Alicia Cordero ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa ◽  
Theodore E. Simos ◽  
...  

2011 ◽  
Vol 5 (2) ◽  
pp. 298-317 ◽  
Author(s):  
Miodrag Petkovic ◽  
Jovana Dzunic ◽  
Ljiljana Petkovic

An efficient family of two-point derivative free methods with memory for solving nonlinear equations is presented. It is proved that the convergence order of the proposed family is increased from 4 to at least 2 + ?6 ? 4.45, 5, 1/2 (5 + ?33) ? 5.37 and 6, depending on the accelerating technique. The increase of convergence order is attained using a suitable accelerating technique by varying a free parameter in each iteration. The improvement of convergence rate is achieved without any additional function evaluations meaning that the proposed methods with memory are very efficient. Moreover, the presented methods are more efficient than all existing methods known in literature in the class of two-point methods and three-point methods of optimal order eight. Numerical examples and the comparison with the existing two-point methods are included to confirm theoretical results and high computational efficiency. 2010 Mathematics Subject Classification. 65H05


Author(s):  
M. K. Dauda ◽  
Mustafa Mamat ◽  
Mohamad A. Mohamed ◽  
Nor Shamsidah Amir Hamzah

Mathematical models from recent research are mostly nonlinear equations in nature. Numerical solutions to such systems are widely needed and applied in those areas of  mathematics. Although, in recent years, this field received serious attentions and new approach were discovered, but yet the efficiency of the previous versions suffers setback. This article gives a new hybrid conjugate gradient parameter, the method is derivative-free and analyzed with an effective inexact line search in a given conditions. Theoretical proofs show that the proposed method retains the sufficient descent and global convergence properties of the original CG methods. The proposed method is tested on a set of test functions, then compared to the two previous classical CG-parameter that resulted the given method, and its performance is given based on number of iterations and CPU time. The numerical results show that the new proposed method is efficient and effective amongst all the methods tested. The graphical representation of the result justify our findings. The computational result indicates that the new hybrid conjugate gradient parameter is suitable and capable for solving symmetric systems of nonlinear equations.


2019 ◽  
Vol 38 (3) ◽  
pp. 111-123
Author(s):  
Morteza Bisheh-Niasar ◽  
Abbas Saadatmandi

The aim of this paper is to present a new nonstandard Newton iterative method for solving nonlinear equations. The convergence of the proposed method is proved and it is shown that the new method has cubic convergence. Furthermore, two new multi-point methods with sixth-order convergence, based on the introduced method, are presented. Also, we describe the basins of attraction for these methods. Finally, some numerical examples are given to show the performance of our methods by comparing with some other methods available in the literature


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rajinder Thukral

A new family of eighth-order derivative-free methods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured that the multipoint iteration methods, without memory based onnevaluations could achieve optimal convergence order of . Thus, we present new derivative-free methods which agree with Kung and Traub conjecture for . Numerical comparisons are made to demonstrate the performance of the methods presented.


Sign in / Sign up

Export Citation Format

Share Document