Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations

2013 ◽  
Vol 219 (14) ◽  
pp. 7741-7753 ◽  
Author(s):  
Jun Cheng ◽  
Hong Zhu ◽  
Shouming Zhong ◽  
Guihua Li
2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

We study the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative of the time-varying delay is not required, which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sirada Pinjai ◽  
Kanit Mukdasai

This paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD) neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document