exponential stability
Recently Published Documents


TOTAL DOCUMENTS

3542
(FIVE YEARS 597)

H-INDEX

96
(FIVE YEARS 12)

Author(s):  
Fayssal Djellali

In this work, we consider a thermoelastic laminated beam with structural damping, where the heat flux is given by Green and Naghdi theories. We establish the well-posedness of the system using semigroup theory. Moreover, under the condition of equal wave speeds, we prove an exponential stability result for the considered system. In the case of lack of exponential stability we show that the solution decays polynomially.


2022 ◽  
Vol 7 (2) ◽  
pp. 1758-1774
Author(s):  
Kui Liu ◽  

<abstract><p>In this paper, the stability of $ (\omega, c) $-periodic solutions of non-instantaneous impulses differential equations is studied. The exponential stability of homogeneous linear non-instantaneous impulsive problems is studied by using Cauchy matrix, and some sufficient conditions for exponential stability are obtained. Further, by using Gronwall inequality, sufficient conditions for exponential stability of $ (\omega, c) $-periodic solutions of nonlinear noninstantaneous impulsive problems are established. Finally, some examples are given to illustrate the correctness of the conclusion.</p></abstract>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Weijun Ma ◽  
Wei Liu ◽  
Quanxin Zhu ◽  
Kaibo Shi

This paper examines the dynamics of the exponential population growth system with mixed fractional Brownian motion. First, we establish some useful lemmas that provide powerful tools for studying the stochastic differential equations with mixed fractional Brownian motion. We offer some explicit expressions and numerical characteristics such as mathematical expectation and variance of the solutions of the exponential population growth system with mixed fractional Brownian motion. Second, we propose two sufficient and necessary conditions for the almost sure exponential stability and the k th moment exponential stability of the solution of the constant coefficient exponential population growth system with mixed fractional Brownian motion. Furthermore, we conduct some large deviation analysis of this mixed fractional population growth system. To the best of the authors’ knowledge, this is the first paper to investigate how the Hurst index affects the exponential stability and large deviations in the biological population system. It is interesting that the phenomenon of large deviations always occurs for addressed system when 1 / 2 < H < 1 . Moreover, several numerical simulations are reported to show the effectiveness of the proposed approach.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2447
Author(s):  
Zhiyou Liu ◽  
Lichao Feng ◽  
Xinbin Li ◽  
Zhigang Lu ◽  
Xianhui Meng

Motivated by the two strategies of intermittent control and discrete feedback control, this paper aims to introduce a periodically intermittent discrete feedback control in the drift part to stabilize an unstable Markov jumping stochastic differential system. It is illustrated that, by the approach of comparison principle, this can be achieved in the sense of almost sure exponential stability. Further, the stabilization theory is applied to Markov jumping stochastic recurrent neural networks.


Sign in / Sign up

Export Citation Format

Share Document