Resistance distance-based graph invariants and spanning trees of graphs derived from the strong prism of a star

2020 ◽  
Vol 382 ◽  
pp. 125335
Author(s):  
Zhemin Li ◽  
Zheng Xie ◽  
Jianping Li ◽  
Yingui Pan
2015 ◽  
Vol 70 (6) ◽  
pp. 459-463 ◽  
Author(s):  
Yujun Yang ◽  
Douglas J. Klein

AbstractTwo resistance-distance-based graph invariants, namely, the Kirchhoff index and the additive degree-Kirchhoff index, are studied. A relation between them is established, with inequalities for the additive degree-Kirchhoff index arising via the Kirchhoff index along with minimum, maximum, and average degrees. Bounds for the Kirchhoff and additive degree-Kirchhoff indices are also determined, and extremal graphs are characterised. In addition, an upper bound for the additive degree-Kirchhoff index is established to improve a previously known result.


10.37236/5295 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiang Zhou ◽  
Zhongyu Wang ◽  
Changjiang Bu

Let $G$ be a connected graph of order $n$. The resistance matrix of $G$ is defined as $R_G=(r_{ij}(G))_{n\times n}$, where $r_{ij}(G)$ is the resistance distance between two vertices $i$ and $j$ in $G$. Eigenvalues of $R_G$ are called R-eigenvalues of $G$. If all row sums of $R_G$ are equal, then $G$ is called resistance-regular. For any connected graph $G$, we show that $R_G$ determines the structure of $G$ up to isomorphism. Moreover, the structure of $G$ or the number of spanning trees of $G$ is determined by partial entries of $R_G$ under certain conditions. We give some characterizations of resistance-regular graphs and graphs with few distinct R-eigenvalues. For a connected regular graph $G$ with diameter at least $2$, we show that $G$ is strongly regular if and only if there exist $c_1,c_2$ such that $r_{ij}(G)=c_1$ for any adjacent vertices $i,j\in V(G)$, and $r_{ij}(G)=c_2$ for any non-adjacent vertices $i,j\in V(G)$.


2016 ◽  
Vol 36 (3) ◽  
pp. 695 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Kexiang Xu ◽  
Yujun Yang

Sign in / Sign up

Export Citation Format

Share Document