number of spanning trees
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 415 ◽  
pp. 126697
Author(s):  
Fengming Dong ◽  
Jun Ge ◽  
Zhangdong Ouyang

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Jia-Bao Liu ◽  
Jing Chen ◽  
Jing Zhao ◽  
Shaohui Wang

Let H n be the linear heptagonal networks with 2 n heptagons. We study the structure properties and the eigenvalues of the linear heptagonal networks. According to the Laplacian polynomial of H n , we utilize the method of decompositions. Thus, the Laplacian spectrum of H n is created by eigenvalues of a pair of matrices: L A and L S of order numbers 5 n + 1 and 4 n + 1 n ! / r ! n − r ! , respectively. On the basis of the roots and coefficients of their characteristic polynomials of L A and L S , we get not only the explicit forms of Kirchhoff index but also the corresponding total number of spanning trees of H n .


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1374
Author(s):  
Umar Ali ◽  
Hassan Raza ◽  
Yasir Ahmed

The normalized Laplacian is extremely important for analyzing the structural properties of non-regular graphs. The molecular graph of generalized phenylene consists of n hexagons and 2n squares, denoted by Ln6,4,4. In this paper, by using the normalized Laplacian polynomial decomposition theorem, we have investigated the normalized Laplacian spectrum of Ln6,4,4 consisting of the eigenvalues of symmetric tri-diagonal matrices LA and LS of order 4n+1. As an application, the significant formula is obtained to calculate the multiplicative degree-Kirchhoff index and the number of spanning trees of generalized phenylene network based on the relationships between the coefficients and roots.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Muhammad Javaid ◽  
Hafiz Usman Afzal ◽  
Shaohui Wang

The number of spanning trees in a network determines the totality of acyclic and connected components present within. This number is termed as complexity of the network. In this article, we address the closed formulae of the complexity of networks’ operations such as duplication (split, shadow, and vortex networks of S n ), sum ( S n + W 3 , S n + K 2 , and C n ∘ K 2 + K 1 ), product ( S n ⊠ K 2 and W n ∘ K 2 ), semitotal networks ( Q S n and R S n ), and edge subdivision of the wheel. All our findings in this article have been obtained by applying the methods from linear algebra, matrix theory, and Chebyshev polynomials. Our results shall also be summarized with the help of individual plots and relative comparison at the end of this article.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chun-Li Kan ◽  
Ying-Ying Tan ◽  
Jia-Bao Liu ◽  
Bao-Hua Xing

In this paper, we give the relation between the spectrum of strongly regular graph and its clique-inserted graph. The Laplacian spectrum and the signless Laplacian spectrum of clique-inserted graph of strongly regular graph are calculated. We also give formulae expressing the energy, Kirchoff index, and the number of spanning trees of clique-inserted graph of a strongly regular graph. And, clique-inserted graph of the triangular graph T t , which is a strongly regular graph, is enumerated.


Author(s):  
Catherine Greenhill ◽  
Mikhail Isaev ◽  
Gary Liang

Abstract Let $${{\mathcal G}_{n,r,s}}$$ denote a uniformly random r-regular s-uniform hypergraph on the vertex set {1, 2, … , n}. We establish a threshold result for the existence of a spanning tree in $${{\mathcal G}_{n,r,s}}$$ , restricting to n satisfying the necessary divisibility conditions. Specifically, we show that when s ≥ 5, there is a positive constant ρ(s) such that for any r ≥ 2, the probability that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree tends to 1 if r > ρ(s), and otherwise this probability tends to zero. The threshold value ρ(s) grows exponentially with s. As $${{\mathcal G}_{n,r,s}}$$ is connected with probability that tends to 1, this implies that when r ≤ ρ(s), most r-regular s-uniform hypergraphs are connected but have no spanning tree. When s = 3, 4 we prove that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree with probability that tends to 1, for any r ≥ 2. Our proof also provides the asymptotic distribution of the number of spanning trees in $${{\mathcal G}_{n,r,s}}$$ for all fixed integers r, s ≥ 2. Previously, this asymptotic distribution was only known in the trivial case of 2-regular graphs, or for cubic graphs.


Sign in / Sign up

Export Citation Format

Share Document