An efficient hybrid genetic algorithm for multi-product competitive supply chain network design with price-dependent demand

2018 ◽  
Vol 71 ◽  
pp. 872-893 ◽  
Author(s):  
Amin Saghaeeian ◽  
Reza Ramezanian
2021 ◽  
Author(s):  
Ovidiu Cosma ◽  
Petrică C Pop ◽  
Cosmin Sabo

Abstract In this paper we investigate a particular two-stage supply chain network design problem with fixed costs. In order to solve this complex optimization problem, we propose an efficient hybrid algorithm, which was obtained by incorporating a linear programming optimization problem within the framework of a genetic algorithm. In addition, we integrated within our proposed algorithm a powerful local search procedure able to perform a fine tuning of the global search. We evaluate our proposed solution approach on a set of large size instances. The achieved computational results prove the efficiency of our hybrid genetic algorithm in providing high-quality solutions within reasonable running-times and its superiority against other existing methods from the literature.


Author(s):  
Krystel K. Castillo-Villar ◽  
Neale R. Smith

This chapter introduces the reader to Supply Chain Network Design (SCND) models that include the Cost Of Quality (COQ) among the relevant costs. In contrast to earlier models, the COQ is computed internally as a function of decisions taken as part of the design of the supply chain. Earlier models assume exogenously given COQ functions. Background information is provided on previous COQ modeling and on supply chain network design models. The authors’ COQ modeling is described in detail as is the SCND model that incorporates COQ. The COQ modeling includes prevention, appraisal, and both internal and external failure costs. Solution methods based on metaheuristics such as simulated annealing and the genetic algorithm are provided, including details on parameter tuning and computational testing. A genetic algorithm was found to yield the best results, followed by the simulated annealing approach. Topics for further research are provided as well as an extensive list of references for further reading.


Sign in / Sign up

Export Citation Format

Share Document