scholarly journals A constructive approach to data-driven randomized learning for feedforward neural networks

2021 ◽  
pp. 107797
Author(s):  
Grzegorz Dudek
1998 ◽  
Vol 10 (3) ◽  
pp. 749-770 ◽  
Author(s):  
Peter Müller ◽  
David Rios Insua

Stemming from work by Buntine and Weigend (1991) and MacKay (1992), there is a growing interest in Bayesian analysis of neural network models. Although conceptually simple, this problem is computationally involved. We suggest a very efficient Markov chain Monte Carlo scheme for inference and prediction with fixed-architecture feedforward neural networks. The scheme is then extended to the variable architecture case, providing a data-driven procedure to identify sensible architectures.


2020 ◽  
Vol 53 (2) ◽  
pp. 1108-1113
Author(s):  
Magnus Malmström ◽  
Isaac Skog ◽  
Daniel Axehill ◽  
Fredrik Gustafsson

2021 ◽  
Vol 7 (15) ◽  
pp. eabe4166
Author(s):  
Philippe Schwaller ◽  
Benjamin Hoover ◽  
Jean-Louis Reymond ◽  
Hendrik Strobelt ◽  
Teodoro Laino

Humans use different domain languages to represent, explore, and communicate scientific concepts. During the last few hundred years, chemists compiled the language of chemical synthesis inferring a series of “reaction rules” from knowing how atoms rearrange during a chemical transformation, a process called atom-mapping. Atom-mapping is a laborious experimental task and, when tackled with computational methods, requires continuous annotation of chemical reactions and the extension of logically consistent directives. Here, we demonstrate that Transformer Neural Networks learn atom-mapping information between products and reactants without supervision or human labeling. Using the Transformer attention weights, we build a chemically agnostic, attention-guided reaction mapper and extract coherent chemical grammar from unannotated sets of reactions. Our method shows remarkable performance in terms of accuracy and speed, even for strongly imbalanced and chemically complex reactions with nontrivial atom-mapping. It provides the missing link between data-driven and rule-based approaches for numerous chemical reaction tasks.


Sign in / Sign up

Export Citation Format

Share Document