Active learning is an effective method to substantially alleviate the problem of expensive annotation cost for data-driven models. Recently, pre-trained language models have been demonstrated to be powerful for learning language representations. In this article, we demonstrate that the pre-trained language model can also utilize its learned textual characteristics to enrich criteria of active learning. Specifically, we provide extra textual criteria with the pre-trained language model to measure instances, including noise, coverage, and diversity. With these extra textual criteria, we can select more efficient instances for annotation and obtain better results. We conduct experiments on both English and Chinese sentence matching datasets. The experimental results show that the proposed active learning approach can be enhanced by the pre-trained language model and obtain better performance.