scholarly journals Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations

2010 ◽  
Vol 234 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Wei Zhang ◽  
Xiu-Shan Cai ◽  
Zheng-Zhi Han
2017 ◽  
Vol 11 (01) ◽  
pp. 1850007 ◽  
Author(s):  
Peerapongpat Singkibud ◽  
Kanit Mukdasai

In this paper, we investigate the problem of delay-range-dependent robust stability analysis for uncertain neutral systems with interval time-varying delays and nonlinear perturbations. The restriction on the derivative of the discrete interval time-varying delay is removed. By applying the augmented Lyapunov–Krasovskii functional approach, new improved integral inequalities, descriptor model transformation, Leibniz–Newton formula and utilization of zero equation, new delay-range-dependent robust stability criteria are derived in terms of linear matrix inequalities (LMIs) for the considered systems. Numerical examples have shown to illustrate the significant improvement on the conservatism of the delay upper bound over some reported results.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

We study the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative of the time-varying delay is not required, which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.


Sign in / Sign up

Export Citation Format

Share Document