Improved Fletcher–Reeves and Dai–Yuan conjugate gradient methods with the strong Wolfe line search

2019 ◽  
Vol 348 ◽  
pp. 525-534 ◽  
Author(s):  
Xianzhen Jiang ◽  
Jinbao Jian
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Meixing Liu ◽  
Guodong Ma ◽  
Jianghua Yin

The conjugate gradient method is very effective in solving large-scale unconstrained optimal problems. In this paper, on the basis of the conjugate parameter of the conjugate descent (CD) method and the second inequality in the strong Wolfe line search, two new conjugate parameters are devised. Using the strong Wolfe line search to obtain the step lengths, two modified conjugate gradient methods are proposed for general unconstrained optimization. Under the standard assumptions, the two presented methods are proved to be sufficient descent and globally convergent. Finally, preliminary numerical results are reported to show that the proposed methods are promising.


Author(s):  
Ladan Arman ◽  
Yuanming Xu ◽  
Long Liping

Abstract In this paper, based on the efficient Conjugate Descent (CD) method, two generalized CD algorithms are proposed to solve the unconstrained optimization problems. These methods are three-term conjugate gradient methods which the generated directions by using the conjugate gradient parameters and independent of the line search satisfy in the sufficient descent condition. Furthermore, under the strong Wolfe line search, the global convergence of the proposed methods are proved. Also, the preliminary numerical results on the CUTEst collection are presented to show effectiveness of our methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
San-Yang Liu ◽  
Yuan-Yuan Huang

This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent conditiongkTdk≤-1-1/4θkgk2  θk>1/4and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.


2019 ◽  
Vol 13 (04) ◽  
pp. 2050081
Author(s):  
Badreddine Sellami ◽  
Mohamed Chiheb Eddine Sellami

In this paper, we are concerned with the conjugate gradient methods for solving unconstrained optimization problems. we propose a modified Fletcher–Reeves (abbreviated FR) [Function minimization by conjugate gradients, Comput. J. 7 (1964) 149–154] conjugate gradient algorithm satisfying a parametrized sufficient descent condition with a parameter [Formula: see text] is proposed. The parameter [Formula: see text] is computed by means of the conjugacy condition, thus an algorithm which is a positive multiplicative modification of the Hestenes and Stiefel (abbreviated HS) [Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards Sec. B 48 (1952) 409–436] algorithm is obtained, which produces a descent search direction at every iteration that the line search satisfies the Wolfe conditions. Under appropriate conditions, we show that the modified FR method with the strong Wolfe line search is globally convergent of uniformly convex functions. We also present extensive preliminary numerical experiments to show the efficiency of the proposed method.


Author(s):  
Yutao Zheng

In this paper, a new family of Dai-Liao--type conjugate gradient methods are proposed for unconstrained optimization problem. In the new methods, the modified secant equation used in [H. Yabe and M. Takano, Comput. Optim. Appl., 28: 203--225, 2004] is considered in Dai and Liao's conjugacy condition. Under some certain assumptions, we show that our methods are globally convergent for general functions with strong Wolfe line search. Numerical results illustrate that our proposed methods can outperform some existing ones.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
P. Kaelo ◽  
P. Mtagulwa ◽  
M. V. Thuto

Abstract In this paper, we develop a new hybrid conjugate gradient method that inherits the features of the Liu and Storey (LS), Hestenes and Stiefel (HS), Dai and Yuan (DY) and Conjugate Descent (CD) conjugate gradient methods. The new method generates a descent direction independently of any line search and possesses good convergence properties under the strong Wolfe line search conditions. Numerical results show that the proposed method is robust and efficient.


Sign in / Sign up

Export Citation Format

Share Document