conjugacy condition
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Mezher M. Abed ◽  
Ufuk Öztürk ◽  
Hisham M. Khudhur

The nonlinear conjugate gradient method is an effective technique for solving large-scale minimizations problems, and has a wide range of applications in various fields, such as mathematics, chemistry, physics, engineering and medicine. This study presents a novel spectral conjugate gradient algorithm (non-linear conjugate gradient algorithm), which is derived based on the Hisham–Khalil (KH) and Newton algorithms. Based on pure conjugacy condition The importance of this research lies in finding an appropriate method to solve all types of linear and non-linear fuzzy equations because the Buckley and Qu method is ineffective in solving fuzzy equations. Moreover, the conjugate gradient method does not need a Hessian matrix (second partial derivatives of functions) in the solution. The descent property of the proposed method is shown provided that the step size at meets the strong Wolfe conditions. In numerous circumstances, numerical results demonstrate that the proposed technique is more efficient than the Fletcher–Reeves and KH algorithms in solving fuzzy nonlinear equations.


2022 ◽  
Vol 20 ◽  
pp. 736-744
Author(s):  
Olawale J. Adeleke ◽  
Idowu A. Osinuga ◽  
Raufu A. Raji

In this paper, a new conjugate gradient (CG) parameter is proposed through the convex combination of the Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP) CG update parameters such that the conjugacy condition of Dai-Liao is satisfied. The computational efficiency of the PRP method and the convergence profile of the FR method motivated the choice of these two CG methods. The corresponding CG algorithm satisfies the sufficient descent property and was shown to be globally convergent under the strong Wolfe line search procedure. Numerical tests on selected benchmark test functions show that the algorithm is efficient and very competitive in comparison with some existing classical methods.


Author(s):  
Aseel M. Qasim ◽  
Zinah F. Salih ◽  
Basim A. Hassan

The primarily objective of this paper which is indicated in the field of conjugate gradient algorithms for unconstrained optimization problems and algorithms is to show the advantage of the new proposed algorithm in comparison with the standard method which is denoted as. Hestenes Stiefel method, as we know the coefficient conjugate parameter is very crucial for this reason, we proposed a simple modification of the coefficient conjugate gradient which is used to derived the new formula for the conjugate gradient update parameter described in this paper. Our new modification is based on the conjugacy situation for nonlinear conjugate gradient methods which is given by the conjugacy condition for nonlinear conjugate gradient methods and added a nonnegative parameter to suggest the new extension of the method. Under mild Wolfe conditions, the global convergence theorem and lemmas are also defined and proved. The proposed method's efficiency is programming and demonstrated by the numerical instances, which were very encouraging.


Author(s):  
Yutao Zheng

In this paper, a new family of Dai-Liao--type conjugate gradient methods are proposed for unconstrained optimization problem. In the new methods, the modified secant equation used in [H. Yabe and M. Takano, Comput. Optim. Appl., 28: 203--225, 2004] is considered in Dai and Liao's conjugacy condition. Under some certain assumptions, we show that our methods are globally convergent for general functions with strong Wolfe line search. Numerical results illustrate that our proposed methods can outperform some existing ones.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1829
Author(s):  
Jamilu Sabi’u ◽  
Kanikar Muangchoo ◽  
Abdullah Shah ◽  
Auwal Bala Abubakar ◽  
Kazeem Olalekan Aremu

This article presents an inexact optimal hybrid conjugate gradient (CG) method for solving symmetric nonlinear systems. The method is a convex combination of the optimal Dai–Liao (DL) and the extended three-term Polak–Ribiére–Polyak (PRP) CG methods. However, two different formulas for selecting the convex parameter are derived by using the conjugacy condition and also by combining the proposed direction with the default Newton direction. The proposed method is again derivative-free, therefore the Jacobian information is not required throughout the iteration process. Furthermore, the global convergence of the proposed method is shown using some appropriate assumptions. Finally, the numerical performance of the method is demonstrated by solving some examples of symmetric nonlinear problems and comparing them with some existing symmetric nonlinear equations CG solvers.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-9
Author(s):  
Ahmed Anwer Mustafa ◽  
Salah Gazi Shareef

In this paper, a new formula of 𝛽𝑘 is suggested for the conjugate gradient method of solving unconstrained optimization problems based on three terms and step size of cubic. Our new proposed CG method has descent condition, sufficient descent condition, conjugacy condition, and global convergence properties. Numerical comparisons with two standard conjugate gradient algorithms show that this algorithm is very effective depending on the number of iterations and the number of functions evaluated.


2021 ◽  
Vol 2 (2) ◽  
pp. 69
Author(s):  
Nasiru Salihu ◽  
Mathew Remilekun Odekunle ◽  
Mohammed Yusuf Waziri ◽  
Abubakar Sani Halilu ◽  
Suraj Salihu

One of todays’ best-performing CG methods is Dai-Liao (DL) method which depends on non-negative parameter  and conjugacy conditions for its computation. Although numerous optimal selections for the parameter were suggested, the best choice of  remains a subject of consideration. The pure conjugacy condition adopts an exact line search for numerical experiments and convergence analysis. Though, a practical mathematical experiment implies using an inexact line search to find the step size. To avoid such drawbacks, Dai and Liao substituted the earlier conjugacy condition with an extended conjugacy condition. Therefore, this paper suggests a new hybrid CG that combines the strength of Liu and Storey and Conjugate Descent CG methods by retaining a choice of Dai-Liao parameterthat is optimal. The theoretical analysis indicated that the search direction of the new CG scheme is descent and satisfies sufficient descent condition when the iterates jam under strong Wolfe line search. The algorithm is shown to converge globally using standard assumptions. The numerical experimentation of the scheme demonstrated that the proposed method is robust and promising than some known methods applying the performance profile Dolan and Mor´e on 250 unrestricted problems.  Numerical assessment of the tested CG algorithms with sparse signal reconstruction and image restoration in compressive sensing problems, file restoration, image video coding and other applications. The result shows that these CG schemes are comparable and can be applied in different fields such as temperature, fire, seismic sensors, and humidity detectors in forests, using wireless sensor network techniques.


Author(s):  
Alaa Saad Ahmed ◽  
Hisham M. Khudhur ◽  
Mohammed S. Najmuldeen

<span>In this study, we develop a different parameter of three term conjugate gradient kind, this scheme depends principally on pure conjugacy condition (PCC), Whereas, the conjugacy condition (PCC) is an important condition in unconstrained non-linear optimization in general and in conjugate gradient methods in particular. The proposed method becomes converged, and satisfy conditions descent property by assuming some hypothesis, The numerical results display the effectiveness of the new method for solving test unconstrained non-linear optimization problems compared to other conjugate gradient algorithms such as Fletcher and Revees (FR) algorithm and three term Fletcher and Revees (TTFR) algorithm. and as shown in Table (1) from where in a number of iterations and evaluation of function and in Figures (1), (2) and (3) from where in A comparison of the number of iterations, A comparison of the number of times a function is calculated and A comparison of the time taken to perform the functions.</span>


2021 ◽  
Vol 2 (1) ◽  
pp. 33
Author(s):  
Nasiru Salihu ◽  
Mathew Remilekun Odekunle ◽  
Also Mohammed Saleh ◽  
Suraj Salihu

Some problems have no analytical solution or too difficult to solve by scientists, engineers, and mathematicians, so the development of numerical methods to obtain approximate solutions became necessary. Gradient methods are more efficient when the function to be minimized continuously in its first derivative. Therefore, this article presents a new hybrid Conjugate Gradient (CG) method to solve unconstrained optimization problems. The method requires the first-order derivatives but overcomes the steepest descent method’s shortcoming of slow convergence and needs not to save or compute the second-order derivatives needed by the Newton method. The CG update parameter is suggested from the Dai-Liao conjugacy condition as a convex combination of Hestenes-Stiefel and Fletcher-Revees algorithms by employing an optimal modulating choice parameterto avoid matrix storage. Numerical computation adopts an inexact line search to obtain the step-size that generates a decent property, showing that the algorithm is robust and efficient. The scheme converges globally under Wolfe line search, and it’s like is suitable in compressive sensing problems and M-tensor systems.


Author(s):  
Yu. I. Buryak ◽  
A. A. Skrynnikov

The article deals with the problem of reducing the volume of tests of complex systems by using a priori data on the reliability of their elements. At the preliminary stage, the a priori distribution of the probability of failure of the system as a whole is determined. To do this, the results of element tests are processed and the parameters of the a posteriori probability distribution of element failure are determined based on the Bayesian procedure. The type of distribution law (beta distribution) is chosen from the conjugacy condition. Statistical modeling of the system failure probability of a known structural-logical reliability scheme is performed for random values of the failure probabilities of each element, set in accordance with the obtained distribution law. The system failure probability distribution law is formed as a mixture of beta distributions; the advantage of this distribution law is a fairly high accuracy of the simulation data description and conjugacy to the binomial distribution. The parameters of a mixture of beta distributions are determined using the EM (Expectation-Maximization) algorithm. The quality of selection of the desired distribution density is checked using the nonparametric Kolmogorov criterion. When testing the system, after each experiment, the a posteriori density of the probability distribution is recalculated; it is represented as a mixture of beta distributions with a constant proportion of components. The parameters of each element of the mixture are easily determined by the results of the experiment. As a point Bayesian estimate, the average value calculated from the a posteriori distribution is taken, the confidence interval for a given confidence probability is found as the central interval. An example is given and the possibility of minimizing the number of tests is shown.


Sign in / Sign up

Export Citation Format

Share Document