An efficient numerical method for pricing American put options under the CEV model

Author(s):  
Jung-Kyung Lee
2021 ◽  
Vol 26 (2) ◽  
pp. 30
Author(s):  
Riccardo Fazio ◽  
Alessandra Insana ◽  
Alessandra Jannelli

In this paper, we present an implicit finite difference method for the numerical solution of the Black–Scholes model of American put options without dividend payments. We combine the proposed numerical method by using a front-fixing approach where the option price and the early exercise boundary are computed simultaneously. We study the consistency and prove the stability of the implicit method by fixing the values of the free boundary and of its first derivative. We improve the accuracy of the computed solution via a mesh refinement based on Richardson’s extrapolation. Comparisons with some proposed methods for the American options problem are carried out to validate the obtained numerical results and to show the efficiency of the proposed numerical method. Finally, by using an a posteriori error estimator, we find a suitable computational grid requiring that the computed solution verifies a prefixed error tolerance.


2021 ◽  
Vol 14 (3) ◽  
pp. 130
Author(s):  
Jonas Al-Hadad ◽  
Zbigniew Palmowski

The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as VAPutω(s)=supτ∈TEs[e−∫0τω(Sw)dw(K−Sτ)+], where T is a family of stopping times, ω is a discount function and E is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process St is a geometric Lévy process with negative exponential jumps, i.e., St=seζt+σBt−∑i=1NtYi. The asset-dependent discounting is reflected in the ω function, so this approach is a generalisation of the classic case when ω is constant. It turns out that under certain conditions on the ω function, the value function VAPutω(s) is convex and can be represented in a closed form. We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of ω such that VAPutω(s) takes a simplified form.


2014 ◽  
Vol 35 (12) ◽  
pp. 1154-1172 ◽  
Author(s):  
Daniel Wei-Chung Miao ◽  
Yung-Hsin Lee ◽  
Wan-Ling Chao

Sign in / Sign up

Export Citation Format

Share Document