Mathematical and Computational Applications
Latest Publications


TOTAL DOCUMENTS

1194
(FIVE YEARS 267)

H-INDEX

16
(FIVE YEARS 5)

Published By Mdpi Ag

2297-8747

2022 ◽  
Vol 27 (1) ◽  
pp. 7
Author(s):  
Monika Stipsitz ◽  
Hèlios Sanchis-Alepuz

Thermal simulations are an important part of the design process in many engineering disciplines. In simulation-based design approaches, a considerable amount of time is spent by repeated simulations. An alternative, fast simulation tool would be a welcome addition to any automatized and simulation-based optimisation workflow. In this work, we present a proof-of-concept study of the application of convolutional neural networks to accelerate thermal simulations. We focus on the thermal aspect of electronic systems. The goal of such a tool is to provide accurate approximations of a full solution, in order to quickly select promising designs for more detailed investigations. Based on a training set of randomly generated circuits with corresponding finite element solutions, the full 3D steady-state temperature field is estimated using a fully convolutional neural network. A custom network architecture is proposed which captures the long-range correlations present in heat conduction problems. We test the network on a separate dataset and find that the mean relative error is around 2% and the typical evaluation time is 35 ms per sample ( 2 ms for evaluation, 33 ms for data transfer). The benefit of this neural-network-based approach is that, once training is completed, the network can be applied to any system within the design space spanned by the randomized training dataset (which includes different components, material properties, different positioning of components on a PCB, etc.).


2022 ◽  
Vol 27 (1) ◽  
pp. 6
Author(s):  
Mariela Cerrada ◽  
Leonardo Trujillo ◽  
Daniel E. Hernández ◽  
Horacio A. Correa Zevallos ◽  
Jean Carlo Macancela ◽  
...  

Gearboxes are widely used in industrial processes as mechanical power transmission systems. Then, gearbox failures can affect other parts of the system and produce economic loss. The early detection of the possible failure modes and their severity assessment in such devices is an important field of research. Data-driven approaches usually require an exhaustive development of pipelines including models’ parameter optimization and feature selection. This paper takes advantage of the recent Auto Machine Learning (AutoML) tools to propose proper feature and model selection for three failure modes under different severity levels: broken tooth, pitting and crack. The performance of 64 statistical condition indicators (SCI) extracted from vibration signals under the three failure modes were analyzed by two AutoML systems, namely the H2O Driverless AI platform and TPOT, both of which include feature engineering and feature selection mechanisms. In both cases, the systems converged to different types of decision tree methods, with ensembles of XGBoost models preferred by H2O while TPOT generated different types of stacked models. The models produced by both systems achieved very high, and practically equivalent, performances on all problems. Both AutoML systems converged to pipelines that focus on very similar subsets of features across all problems, indicating that several problems in this domain can be solved by a rather small set of 10 common features, with accuracy up to 90%. This latter result is important in the research of useful feature selection for gearbox fault diagnosis.


2022 ◽  
Vol 27 (1) ◽  
pp. 5
Author(s):  
Josué Enríquez Zárate ◽  
María de los Ángeles Gómez López ◽  
Javier Alberto Carmona Troyo ◽  
Leonardo Trujillo

This paper studies erosion at the tip of wind turbine blades by considering aerodynamic analysis, modal analysis and predictive machine learning modeling. Erosion can be caused by several factors and can affect different parts of the blade, reducing its dynamic performance and useful life. The ability to detect and quantify erosion on a blade is an important predictive maintenance task for wind turbines that can have broad repercussions in terms of avoiding serious damage, improving power efficiency and reducing downtimes. This study considers both sides of the leading edge of the blade (top and bottom), evaluating the mechanical imbalance caused by the material loss that induces variations of the power coefficient resulting in a loss in efficiency. The QBlade software is used in our analysis and load calculations are preformed by using blade element momentum theory. Numerical results show the performance of a blade based on the relationship between mechanical damage and aerodynamic behavior, which are then validated on a physical model. Moreover, two machine learning (ML) problems are posed to automatically detect the location of erosion (top of the edge, bottom or both) and to determine erosion levels (from 8% to 18%) present in the blade. The first problem is solved using classification models, while the second is solved using ML regression, achieving accurate results. ML pipelines are automatically designed by using an AutoML system with little human intervention, achieving highly accurate results. This work makes several contributions by developing ML models to both detect the presence and location of erosion on a blade, estimating its level and applying AutoML for the first time in this domain.


2022 ◽  
Vol 27 (1) ◽  
pp. 4
Author(s):  
Dominic P. Clemence-Mkhope ◽  
Gregory A. Gibson

Four discrete models, using the exact spectral derivative discretization finite difference (ESDDFD) method, are proposed for a chaotic five-dimensional, conformable fractional derivative financial system incorporating ethics and market confidence. Since the system considered was recently studied using the conformable Euler finite difference (CEFD) method and found to be hyperchaotic, and the CEFD method was recently shown to be valid only at fractional index , the source of the hyperchaos is in question. Through numerical experiments, illustration is presented that the hyperchaos previously detected is, in part, an artifact of the CEFD method, as it is absent from the ESDDFD models.


2021 ◽  
Vol 27 (1) ◽  
pp. 3
Author(s):  
Ana C. Conceição ◽  
Jéssica C. Pires

The development of operator theory is stimulated by the need to solve problems emerging from several fields in mathematics and physics. At the present time, this theory has wide applications in the study of non-linear differential equations, in linear transport theory, in the theory of diffraction of acoustic and electromagnetic waves, in the theory of scattering and of inverse scattering, among others. In our work, we use the computer algebra system Mathematica to implement, for the first time on a computer, analytical algorithms developed by us and others within operator theory. The main goal of this paper is to present new operator theory algorithms related to Cauchy type singular integrals, defined in the unit circle. The design of these algorithms was focused on the possibility of implementing on a computer all the extensive symbolic and numeric calculations present in the algorithms. Several nontrivial examples computed with the algorithms are presented. The corresponding source code of the algorithms has been made available as a supplement to the online edition of this article.


2021 ◽  
Vol 27 (1) ◽  
pp. 2
Author(s):  
Fabio Arena ◽  
Mario Collotta ◽  
Liliana Luca ◽  
Marianna Ruggieri ◽  
Francesco Gaetano Termine

With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.


2021 ◽  
Vol 27 (1) ◽  
pp. 1
Author(s):  
Ana C. Conceição

The use of technological learning tools has been increasingly recognized as a useful tool to promote students’ motivation to deal with, and understand, mathematics concepts. Current digital technology allows students to work interactively with a large number and variety of graphics, complementing the theoretical results and often used paper and pencil calculations. The computer algebra system Mathematica is a very powerful software that allows the implementation of many interactive visual applications. The main goal of this work is to show how some new dynamic and interactive tools, created with Mathematica and available in the Computable Document Format (CDF), can be used as active learning tools to promote better student activity and engagement in the learning process. The CDF format allows anyone with a computer to use them, at no cost, even without an active Wolfram Mathematica license. Besides that, the presented tools are very intuitive to use which makes it suitable for less experienced users. Some tools applicable to several mathematics concepts taught in higher education will be presented. This kind of tools can be used either in a remote or classroom learning environment. The corresponding CDF files are made available as supplement of the online edition of this article.


2021 ◽  
Vol 26 (4) ◽  
pp. 82
Author(s):  
Farrukh Jamal ◽  
Ali H. Abuzaid ◽  
Muhammad H. Tahir ◽  
Muhammad Arslan Nasir ◽  
Sadaf Khan ◽  
...  

In this article, Burr III distribution is proposed with a significantly improved functional form. This new modification has enhanced the flexibility of the classical distribution with the ability to model all shapes of hazard rate function including increasing, decreasing, bathtub, upside-down bathtub, and nearly constant. Some of its elementary properties, such as rth moments, sth incomplete moments, moment generating function, skewness, kurtosis, mode, ith order statistics, and stochastic ordering, are presented in a clear and concise manner. The well-established technique of maximum likelihood is employed to estimate model parameters. Middle-censoring is considered as a modern general scheme of censoring. The efficacy of the proposed model is asserted through three applications consisting of complete and censored samples.


2021 ◽  
Vol 26 (4) ◽  
pp. 81
Author(s):  
Lishamol Tomy ◽  
Veena G ◽  
Christophe Chesneau

The paper contributes majorly in the development of a flexible trigonometric extension of the well-known modified Lindley distribution. More precisely, we use features from the sine generalized family of distributions to create an original one-parameter survival distribution, called the sine modified Lindley distribution. As the main motivational fact, it provides an attractive alternative to the Lindley and modified Lindley distributions; it may be better able to model lifetime phenomena presenting data of leptokurtic nature. In the first part of the paper, we introduce it conceptually and discuss its key characteristics, such as functional, reliability, and moment analysis. Then, an applied study is conducted. The usefulness, applicability, and agility of the sine modified Lindley distribution are illustrated through a detailed study using simulation. Two real data sets from the engineering and climate sectors are analyzed. As a result, the sine modified Lindley model is proven to have a superior match to important models, such as the Lindley, modified Lindley, sine exponential, and sine Lindley models, based on goodness-of-fit criteria of importance.


2021 ◽  
Vol 26 (4) ◽  
pp. 80
Author(s):  
Xue Yang ◽  
Hong Bian ◽  
Haizheng Yu ◽  
Dandan Liu

Let G=(V(G),E(G)) be a connected graph with n vertices and m edges. A bijection f:E(G)→{1,2,⋯,m} is an edge labeling of G. For any vertex x of G, we define ω(x)=∑e∈E(x)f(e) as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local antimagic labeling of G, if ω(u)≠ω(v) for any two adjacent vertices u,v∈V(G). It is clear that any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex label ω(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of different vertex labels taken over all colorings induced by local antimagic labelings of G. In this paper, we present explicit local antimagic chromatic numbers of Fn∨K2¯ and Fn−v, where Fn is the friendship graph with n triangles and v is any vertex of Fn. Moreover, we explicitly construct an infinite class of connected graphs G such that χla(G)=χla(G∨K2¯), where G∨K2¯ is the join graph of G and the complement graph of complete graph K2. This fact leads to a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial solution to Problem 3.19 in Lau et al. in 2021.


Sign in / Sign up

Export Citation Format

Share Document