scholarly journals Shallow water equations in Lagrangian coordinates: Symmetries, conservation laws and its preservation in difference models

Author(s):  
V.A. Dorodnitsyn ◽  
E.I. Kaptsov





1991 ◽  
Vol 227 ◽  
pp. 393-406 ◽  
Author(s):  
Darryl D. Holm

The problem of the dynamics of elliptical-vortex solutions of the rotating shallow-water equations is solved in Lagrangian coordinates using methods of Hamiltonian mechanics. All such solutions are shown to be quasi-periodic by reducing the problem to quadratures in terms of physically meaningful variables. All of the relative equilibria - including the well-known rodon solution - are shown to be orbitally Lyapunov stable to perturbations in the class of elliptical-vortex solutions.



1987 ◽  
Vol 10 (3) ◽  
pp. 557-562 ◽  
Author(s):  
Yilmaz Akyildiz

We consider the system of nonlinear differential equations governing shallow water waves over a uniform or sloping bottom. By using the hodograph method we construct solutions, conservation laws, and Böcklund transformations for these equations. We show that these constructions are canonical relative to a symplectic form introduced by Manin.



2009 ◽  
Vol 3 (1) ◽  
pp. 373-384 ◽  
Author(s):  
Hiroshi KANAYAMA ◽  
Hiroshi DAN


2021 ◽  
Vol 62 (8) ◽  
pp. 083508
Author(s):  
V. A. Dorodnitsyn ◽  
E. I. Kaptsov




2006 ◽  
Vol 16 (01) ◽  
pp. 119-137 ◽  
Author(s):  
RICARDO BARROS

A full set of conservation laws for the two-layer shallow water equations is presented for the one-dimensional case. We prove that all the conservation laws are linear combination of the equations for the conservation of mass and velocity (in each layer), total momentum and total energy.This result generalizes that of Montgomery and Moodie that found the same conserved quantities by restricting their search to the multinomials expressions in the layer variables. Though the question of whether or not there are only a finite number of these quantities is left as an open question by the authors. Our work puts an end to this: in fact, no more conservation laws are admitted for the two-layer shallow water equations. The key mathematical ingredient of the method proposed leading to the result is the Frobenius problem. Moreover, we present a full set of conservation laws for the classical one-dimensional shallow water model with topography, by using the same techniques.



Sign in / Sign up

Export Citation Format

Share Document