Robust topology optimization for structures under bounded random loads and material uncertainties

2021 ◽  
Vol 252 ◽  
pp. 106569
Author(s):  
Song Bai ◽  
Zhan Kang
2018 ◽  
Vol 35 (2) ◽  
pp. 710-732 ◽  
Author(s):  
Jie Liu ◽  
Guilin Wen ◽  
Qixiang Qing ◽  
Fangyi Li ◽  
Yi Min Xie

Purpose This paper aims to tackle the challenge topic of continuum structural layout in the presence of random loads and to develop an efficient robust method. Design/methodology/approach An innovative robust topology optimization approach for continuum structures with random applied loads is reported. Simultaneous minimization of the expectation and the variance of the structural compliance is performed. Uncertain load vectors are dealt with by using additional uncertain pseudo random load vectors. The sensitivity information of the robust objective function is obtained approximately by using the Taylor expansion technique. The design problem is solved using bi-directional evolutionary structural optimization method with the derived sensitivity numbers. Findings The numerical examples show the significant topological changes of the robust solutions compared with the equivalent deterministic solutions. Originality/value A simple yet efficient robust topology optimization approach for continuum structures with random applied loads is developed. The computational time scales linearly with the number of applied loads with uncertainty, which is very efficient when compared with Monte Carlo-based optimization method.


Author(s):  
Jincheng Qin ◽  
Hiroshi Isakari ◽  
Kouichi Taji ◽  
Toru Takahashi ◽  
Toshiro Matsumoto

Sign in / Sign up

Export Citation Format

Share Document