scholarly journals JRAF: A Julia Package for Computation of Relativistic Molecular Auxiliary Functions

2022 ◽  
pp. 108276
Author(s):  
Ali Bağcı
Pramana ◽  
2001 ◽  
Vol 56 (5) ◽  
pp. 691-696 ◽  
Author(s):  
I I Guseinov ◽  
B A Mamedov ◽  
M Kara ◽  
M Orbay

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1335
Author(s):  
Vasile Marinca ◽  
Nicolae Herisanu

Based on a new kind of analytical approach, namely the Optimal Auxiliary Functions Method (OAFM), a new analytical procedure is proposed to solve the problem of the annular axisymmetric stagnation flow and heat transfer on a moving cylinder with finite radius. As a novelty, explicit analytical solutions were obtained for the considered complex problem. First, the Navier–Stokes equations were simplified by means of similarity transformations that depended on different parameters and some combinations of these parameters, and the problem under study was reduced to six nonlinear ordinary differential equations with six unknowns. The OAFM proves to be a powerful tool for finding an accurate analytical solution for nonlinear problems, ensuring a fast convergence after the first iteration, even if the small or large parameters are absent, since the determination of the convergence-control parameters is independent of the magnitude of the coefficients that appear in the nonlinear differential equations. Concerning the main novelties of the proposed approach, it is worth mentioning the presence of some auxiliary functions, the involvement of the convergence-control parameters, the construction of the first iteration and much freedom to select the procedure for determining the optimal values of the convergence-control parameters.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2019 ◽  
Vol 12 ◽  
pp. 298-301
Author(s):  
Israfil I. Guseinov ◽  
Zekayi Andıç ◽  
Bahtiyar A. Mamedov ◽  
Nurşen Seçkin Görgün

Sign in / Sign up

Export Citation Format

Share Document