Symmetry
Latest Publications


TOTAL DOCUMENTS

7783
(FIVE YEARS 7274)

H-INDEX

45
(FIVE YEARS 36)

Published By Mdpi Ag

2073-8994

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Jiguang Hou ◽  
Xianteng Cao ◽  
Changshu Zhan

Suspension is an important part of intelligent and safe transportation; it is the balance point between the comfort and handling stability of a vehicle under intelligent traffic conditions. In this study, a control method of left-right symmetry of air suspension based on H∞ theory was proposed, which was verified under intelligent traffic conditions. First, the control stability caused by the active suspension control system running on uneven roads needs to be ensured. To address this issue, a 1/4 vehicle active suspension model was established, and the vertical acceleration of the vehicle body was applied as the main index of ride comfort. H∞ performance constraint output indicators of the controller contained the tire dynamic load, suspension dynamic stroke, and actuator control force limit. Based on the Lyapunov stability theory, an output feedback control law with H∞-guaranteed performance was proposed to constrain multiple targets. This way, the control problem was transformed into a solution to the Riccati equation. The simulation results showed that when dealing with general road disturbances, the proposed control strategy can reduce the vehicle body acceleration by about 20% and meet the requirements of an ultimate suspension dynamic deflection of 0.08 m and a dynamic tire load of 1500 N. Using this symmetrical control method can significantly improve the ride comfort and driving stability of a vehicle under intelligent traffic conditions.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 173
Author(s):  
Jianfu Luo ◽  
Jinsheng Zhou ◽  
Xi Jiang ◽  
Haodong Lv

This paper proposes a modification of the imperialist competitive algorithm to solve multi-objective optimization problems with hybrid methods (MOHMICA) based on a modification of the imperialist competitive algorithm with hybrid methods (HMICA). The rationale for this is that there is an obvious disadvantage of HMICA in that it can only solve single-objective optimization problems but cannot solve multi-objective optimization problems. In order to adapt to the characteristics of multi-objective optimization problems, this paper improves the establishment of the initial empires and colony allocation mechanism and empire competition in HMICA, and introduces an external archiving strategy. A total of 12 benchmark functions are calculated, including 10 bi-objective and 2 tri-objective benchmarks. Four metrics are used to verify the quality of MOHMICA. Then, a new comprehensive evaluation method is proposed, called “radar map method”, which could comprehensively evaluate the convergence and distribution performance of multi-objective optimization algorithm. It can be seen from the four coordinate axes of the radar maps that this is a symmetrical evaluation method. For this evaluation method, the larger the radar map area is, the better the calculation result of the algorithm. Using this new evaluation method, the algorithm proposed in this paper is compared with seven other high-quality algorithms. The radar map area of MOHMICA is at least 14.06% larger than that of other algorithms. Therefore, it is proven that MOHMICA has advantages as a whole.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 172
Author(s):  
Dosung Kim ◽  
Mi Kim

Software is a very important part to implement advanced information systems, such as AI and IoT based on the latest hardware equipment of the fourth Industrial Revolution. In particular, decision making for software upgrade is one of the essential processes that can solve problems for upgrading the information systems. However, most of the decision-making studies for this purpose have been conducted only from the perspective of the IT professional and management position. Moreover, software upgrade can be influenced by various layers of decision makers, so further research is needed. Therefore, it is necessary to conduct research on what factors are required and affect the decision making of software upgrade at various layers of organization. For this purpose, decision factors of software upgrade are identified by literature review in this study. Additionally, the priority, degree of influence and relationship between the factors are analyzed by using the AHP and DEMATEL techniques at the organizational level of users, managers and IT professionals. The results show that the priority, weight value, causal relationship of decision factors of users, managers and IT professionals who constitute the organizational level were very different. The managers first considered the benefits, such as ROI, for organization as a leader. The users tended to consider their work efficiency and changes due to the software upgrade first. Finally, the IT professionals considered ROI, budget and compatibility for the aspect of the managers and users. Therefore, the related information of each organizational level can be presented more clearly for the systematic and symmetrical decision making of software upgrade based on the results of this study.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 170
Author(s):  
Panayiotis Vafeas ◽  
Eleftherios Protopapas ◽  
Maria Hadjinicolaou

Modern engineering technology often involves the physical application of heat and mass transfer. These processes are associated with the creeping motion of a relatively homogeneous swarm of small particles, where the spheroidal geometry represents the shape of the embedded particles within such aggregates. Here, the steady Stokes flow of an incompressible, viscous fluid through an assemblage of particles, at low Reynolds numbers, is studied by employing a particle-in-cell model. The mathematical formulation adopts the Kuwabara-type assumption, according to which each spheroidal particle is stationary and it is surrounded by a confocal spheroid that creates a fluid envelope, in which the Newtonian fluid moves with a constant velocity of arbitrary orientation. The boundary value problem in the fluid envelope is solved by imposing non-slip conditions on the surface of the spheroid, which is also considered as non-penetrable, while zero vorticity is assumed on the fictitious spheroidal boundary along with a uniform approaching velocity. The three-dimensional flow fields are calculated analytically for the first time, in the spheroidal geometry, by virtue of the Papkovich–Neuber representation. Through this, the velocity and the total pressure fields are provided in terms of a vector and the scalar spheroidal harmonic potentials, which enables the thorough study of the relevant physical characteristics of the flow fields. The newly obtained analytical expressions generalize to any direction with the existing results holding for the asymmetrical case, which were obtained with the aid of a stream function. These can be employed for the calculation of quantities of physical or engineering interest. Numerical implementation reveals the flow behavior within the fluid envelope for different geometrical cell characteristics and for the arbitrarily-assumed velocity field, thus reflecting the different flow/porous media situations. Sample calculations show the excellent agreement of the obtained results with those available for special geometrical cases. All of these findings demonstrate the usefulness of the proposed method and the powerfulness of the obtained analytical expansions.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 168
Author(s):  
Trong-The Nguyen ◽  
Truong-Giang Ngo ◽  
Thi-Kien Dao ◽  
Thi-Thanh-Tan Nguyen

Microgrid operations planning is crucial for emerging energy microgrids to enhance the share of clean energy power generation and ensure a safe symmetry power grid among distributed natural power sources and stable functioning of the entire power system. This paper suggests a new improved version (namely, ESSA) of the sparrow search algorithm (SSA) based on an elite reverse learning strategy and firefly algorithm (FA) mutation strategy for the power microgrid optimal operations planning. Scheduling cycles of the microgrid with a distributed power source’s optimal output and total operation cost is modeled based on variables, e.g., environmental costs, electricity interaction, investment depreciation, and maintenance system, to establish grid multi-objective economic optimization. Compared with other literature methods, such as Genetic algorithm (GA), Particle swarm optimization (PSO), Firefly algorithm (FA), Bat algorithm (BA), Grey wolf optimization (GWO), and SSA show that the proposed plan offers higher performance and feasibility in solving microgrid operations planning issues.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Vyacheslav Klyukhin ◽  
Austin Ball ◽  
Felix Bergsma ◽  
Henk Boterenbrood ◽  
Benoit Curé ◽  
...  

This review article describes the performance of the magnetic field measuring and monitoring systems for the Compact Muon Solenoid (CMS) detector. To cross-check the magnetic flux distribution obtained with the CMS magnet model, four systems for measuring the magnetic flux density in the detector volume were used. The magnetic induction inside the 6 m diameter superconducting solenoid was measured and is currently monitored by four nuclear magnetic resonance (NMR) probes installed using special tubes at a radius of 2.9148 m outside the barrel hadron calorimeter at ±0.006 m from the coil median XY-plane. Two more NRM probes were installed at the faces of the tracking system at Z-coordinates of −2.835 and +2.831 m and a radius of 0.651 m from the solenoid axis. The field inside the superconducting solenoid was precisely measured in 2006 in a cylindrical volume of 3.448 m in diameter and 7 m in length using ten three-dimensional (3D) B-sensors based on the Hall effect (Hall probes). These B-sensors were installed on each of the two propeller arms of an automated field-mapping machine. In addition to these measurement systems, a system for monitoring the magnetic field during the CMS detector operation has been developed. Inside the solenoid in the horizontal plane, four 3D B-sensors were installed at the faces of the tracking detector at distances X = ±0.959 m and Z-coordinates of −2.899 and +2.895 m. Twelve 3D B-sensors were installed on the surfaces of the flux-return yoke nose disks. Seventy 3D B-sensors were installed in the air gaps of the CMS magnet yoke in 11 XY-planes of the azimuthal sector at 270°. A specially developed flux loop technique was used for the most complex measurements of the magnetic flux density inside the steel blocks of the CMS magnet yoke. The flux loops are installed in 22 sections of the flux-return yoke blocks in grooves of 30 mm wide and 12–13 mm deep and consist of 7–10 turns of 45 wire flat ribbon cable. The areas enclosed by these coils varied from 0.3 to 1.59 m2 in the blocks of the barrel wheels and from 0.5 to 1.12 m2 in the blocks of the yoke endcap disks. The development of these systems and the results of the magnetic flux density measurements across the CMS magnet are presented and discussed in this review article.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 162
Author(s):  
Silvana Mattei ◽  
Luca Cozzarini ◽  
Chiara Bedon

Anti-shatter safety films (ASFs) are often used for structural glass applications. The goal is to improve the response of monolithic elements and prevent fragments from shattering. Thus, the main reason behind their use is the possibility to upgrade safety levels against the brittle failure of glass and minimize the number of possible injuries. However, the impact response of glass elements bonded with Polyethylene terephthalate (PET)-films and pressure sensitive adhesives (PSAs) still represents a research topic of open discussion. Major challenges derive from material characterization and asymmetrical variability under design loads and ageing. In particular, the measurement of interface mechanical characteristics for the adhesive layer in contact with glass is a primary parameter for the ASF choice optimization. For this reason, the present paper presents an experimental campaign aimed at calibrating some basic mechanical parameters that provide the characterization of constitutive models, such as tensile properties (yielding stress and Young modulus) for PET-film and adhesive properties for PSA (energy fracture and peel force). In doing so, both tensile tests for PET-films and peeling specimens are taken into account for a commercially available ASF, given that the peeling test protocol is one of most common methods for the definition of adhesion properties. Moreover, an extensive calibration of the Finite Element (FE) model is performed in order to conduct a parametric numerical analysis of ASF bonded glass solutions. Furthermore, a Kinloch approach typically used to determine the fracture energy of a given tape by considering a variable peel angle, is also adopted to compare the outcomes of calibration analyses and FE investigations on the tested specimens. Finally, a study of the effect of multiple aspects is also presented. The results of the experimental program and the following considerations confirm the rate dependence and ageing dependence in peel tests.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Karl Hess

This review is related to the Einstein-Bohr debate and to Einstein–Podolsky–Rosen’s (EPR) and Bohm’s (EPRB) Gedanken-experiments as well as their realization in actual experiments. I examine a significant number of papers, from my minority point of view and conclude that the well-known theorems of Bell and Clauser, Horne, Shimony and Holt (CHSH) deal with mathematical abstractions that have only a tenuous relation to quantum theory and the actual EPRB experiments. It is also shown that, therefore, Bell-CHSH cannot be used to assess the nature of quantum entanglement, nor can physical features of entanglement be used to prove Bell-CHSH. Their proofs are, among other factors, based on a statistical sampling argument that is invalid for general physical entities and processes and only applicable for finite “populations”; not for elements of physical reality that are linked, for example, to a time-like continuum. Bell-CHSH have, furthermore, neglected the subtleties of the theorem of Vorob’ev that includes their theorems as special cases. Vorob’ev found that certain combinatorial-topological cyclicities of classical random variables form a necessary and sufficient condition for the constraints that are now known as Bell-CHSH inequalities. These constraints, however, must not be linked to the observables of quantum theory nor to the actual EPRB experiments for a variety of reasons, including the existence of continuum-related variables and appropriate considerations of symmetry.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 164
Author(s):  
Wenhui Pei ◽  
Qi Zhang ◽  
Yongjing Li

This paper presents an efficiency optimization controller for a permanent magnet synchronous motor (PMSM) of an electric vehicle. A new loss model is obtained based on the permanent magnet synchronous motor’s energy balance equation utilizing the theory of the port-controlled Hamiltonian system. Since the energy balance equation is just the power loss of the PMSM, which provides great convenience for us to use the energy method for efficiency optimization. Then, a new loss minimization algorithm (LMA) is designed based on the new loss model by adjusting the ratio of the excitation current in the d–q axis. Moreover, the proposed algorithm is achieved by the principle of the energy shape method of the Hamiltonian system. Simulations are finally presented to verify effectiveness. The main results of these simulations indicate that the dynamic performance of the drive is maintained and the efficiency increase is up to about 7% compared with the id=0 control algorithm, and about 4.5% compared with the conventional LMA at a steady operation of a PMSM.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Lei Li ◽  
Ke Lei

When a traffic tunnel passes through special strata such as soft rock with high geo-stress, expansive rock, and fault fracture zones, the traditional supporting structure is often destroyed due to complicated loads, which threatens the construction and operation safety of tunnel engineering. Concrete-filled steel tubular (CFST) structure gives full play to the respective advantages of steel and concrete and has better bearing capacity and economic benefits than traditional support structure, which has achieved good results in some underground engineering applications. In order to promote the application of CFST in the construction of traffic tunnels with complex geological conditions and improve the bearing capacity of the initial supporting structure of tunnels, the influencing factors of the bearing capacity of CFST arch were studied by numerical simulation. The main achievements are as follows: (1) The load-displacement curves of CFST members under different material parameters are basically consistent. CFST members have significant restrictions on displacement in the elastic stage and have high ultimate bearing capacity. Although the bearing capacity decreases obviously after reaching the peak, it shows good extension performance. (2) The height of the steel tube section, the thickness of the steel tube wall and the grade of the core concrete have an approximately linear positive correlation with the bearing capacity of CFST arch, but the influence of these three factors on the bearing capacity of CFST arch decreases in turn, and when the grade of core concrete increases above C50, it has no significant effect on the bearing capacity of members.


Sign in / Sign up

Export Citation Format

Share Document