nonlinear dynamical systems
Recently Published Documents


TOTAL DOCUMENTS

1583
(FIVE YEARS 257)

H-INDEX

73
(FIVE YEARS 8)

2022 ◽  
Vol 12 (2) ◽  
pp. 747
Author(s):  
Yaxiong Ren ◽  
Christian Adams ◽  
Tobias Melz

In recent years, the rapid growth of computing technology has enabled identifying mathematical models for vibration systems using measurement data instead of domain knowledge. Within this category, the method Sparse Identification of Nonlinear Dynamical Systems (SINDy) shows potential for interpretable identification. Therefore, in this work, a procedure of system identification based on the SINDy framework is developed and validated on a single-mass oscillator. To estimate the parameters in the SINDy model, two sparse regression methods are discussed. Compared with the Least Squares method with Sequential Threshold (LSST), which is the original estimation method from SINDy, the Least Squares method Post-LASSO (LSPL) shows better performance in numerical Monte Carlo Simulations (MCSs) of a single-mass oscillator in terms of sparseness, convergence, identified eigenfrequency, and coefficient of determination. Furthermore, the developed method SINDy-LSPL was successfully implemented with real measurement data of a single-mass oscillator with known theoretical parameters. The identified parameters using a sweep signal as excitation are more consistent and accurate than those identified using impulse excitation. In both cases, there exists a dependency of the identified parameter on the excitation amplitude that should be investigated in further research.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Deng ◽  
Zhuo-Fei Fan ◽  
Bin-Bin Zhao ◽  
Xing-Guang Wang ◽  
Shiyuan Zhao ◽  
...  

AbstractChaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions. Near-infrared light chaos based on semiconductor lasers has been extensively studied and has enabled various applications. Here, we report a fully-developed hyperchaos in the mid-infrared regime, which is produced from interband cascade lasers subject to the external optical feedback. Lyapunov spectrum analysis demonstrates that the chaos exhibits three positive Lyapunov exponents. Particularly, the chaotic signal covers a broad frequency range up to the GHz level, which is two to three orders of magnitude broader than existed mid-infrared chaos solutions. The interband cascade lasers produce either periodic oscillations or low-frequency fluctuations before bifurcating to hyperchaos. This hyperchaos source is valuable for developing long-reach secure optical communication links and remote chaotic Lidar systems, taking advantage of the high-transmission windows of the atmosphere in the mid-infrared regime.


Author(s):  
Chiwa Musa Dalah ◽  
◽  
Umar Yusuf Madaki ◽  

Malaria was declared an emergency in Nigeria and strategies for the control of Malaria in Nigeria were adopted to reduce its prevalence to a level at which the disease will no longer constitute public health problems. In this work, we presented a deterministic (Ross–Macdonald model susceptible, expose/ infected, infectious and recovered) model incorporating the method of control adopted by national Malaria and leprosy control program. We established the disease free and the endemic equilibrium states and carried out the stability analysis of the disease. Free and the equilibrium state. We also carried out numerical simulation of the model to have an insight into the dynamics of the model. We found out that the disease free equilibrium state is stable. The feedback dynamics from mosquito to human and back to mosquito involve considerable time due to the incubation periods of the parasites. In this paper, taking explicit account of the incubation periods of parasites within the human and the mosquito, we first propose a Ross–Macdonald model. The Jacobiant results showed that it would be very difficult to completely eradicate Malaria from Nigeria using the method adopted by national Malaria and leprosy control program.


2021 ◽  
Vol 104 (4) ◽  
pp. 142-150
Author(s):  
O.N. Stanzhytskyi ◽  
◽  
A.T. Assanova ◽  
M.A. Mukash ◽  
◽  
...  

The averaging method, originally offered by Krylov and Bogolyubov for ordinary differential equations, is one of the most widespread and effective methods for the analysis of nonlinear dynamical systems. Further, the averaging method was developed and applied for investigating of various problems. Impulsive systems of differential equations supply as mathematical models of objects that, during their evolution, they are subjected to the action of short-term forces. Many researches have been devoted to non-fixed impulse problems. For these problems, the existence, stability, and other asymptotic properties of solutions were studied and boundary value problems for impulsive systems were considered. Questions of the existence of periodic and almost periodic solutions to impulsive systems also were examined. In this paper, the averaging method is used to study the existence of two-sided solutions bounding on the axis of impulse systems of differential equations with non-fixed times. It is shown that a one-sided, bounding, asymptotically stable solution to the averaged system generates a two-sided solution to the exact system. The closeness of the corresponding solutions of the exact and averaged systems both on finite and infinite time intervals is substantiated by the first and second theorems of N.N. Bogolyubov.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3287
Author(s):  
Elena Hernandez ◽  
Octavio Manero ◽  
Fernando Bautista ◽  
Juan Paulo Garcia-Sandoval

This is the first on a series of articles that deal with nonlinear dynamical systems under oscillatory input that may exhibit harmonic and non-harmonic frequencies and possibly complex behavior in the form of chaos. Frequency response techniques of nonlinear dynamical systems are usually analyzed with numerical methods because, most of the time, analytical solutions turn out to be difficult, if not impossible, since they are based on infinite series of trigonometric functions. The analytic matrix method reported here is a direct one that speeds up the solution processing compared to traditional series solution methods. In this method, we work with the invariant submanifold of the problem, and we propose a series solution that is equivalent to the harmonic balance series solution. However, the recursive relation obtained for the coefficients in our analytical method simplifies traditional approaches to obtain the solution with the harmonic balance series method. This method can be applied to nonlinear dynamic systems under oscillatory input to find the analog of a usual Bode plot where regions of small and medium amplitude oscillatory input are well described. We found that the identification of such regions requires both the amplitude as well as the frequency to be properly specified. In the second paper of the series, the method to solve problems in the field of large amplitudes will be addressed.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3229
Author(s):  
Irina Bashkirtseva

The problem of synthesis of stochastic sensitivity for equilibrium modes in nonlinear randomly forced dynamical systems with incomplete information is considered. We construct a feedback regulator that uses noisy data on some system state coordinates. For parameters of the regulator providing assigned stochastic sensitivity, a quadratic matrix equation is derived. Attainability of the assigned stochastic sensitivity is reduced to the solvability of this equation. We suggest a constructive algorithm for solving this quadratic matrix equation. These general theoretical results are used to solve the problem of stabilizing equilibrium modes of nonlinear stochastic oscillators under conditions of incomplete information. Details of our approach are illustrated on the example of a van der Pol oscillator.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2336
Author(s):  
Tiao-Yang Cai ◽  
Hui-Long Jin ◽  
Hong Yu ◽  
Xiang-Peng Xie

This paper considers the Modified Autonomous Van der Pol–Duffing equation subjected to dynamic state feedback, which can well characterize the dynamic behaviors of the nonlinear dynamical systems. Both the issues of local stability switches and the Hopf bifurcation versus time delay are investigated. Associating with the τ decomposition strategy and the center manifold theory, the delay stable intervals and the direction and stability of the Hopf bifurcation are all determined. Specifically, the computation of purely imaginary roots (symmetry to the real axis), the positive real root formula for cubic equation and the sophisticated bilinear form of adjoint operators are proposed, which make the calculations mentioned in our discussion unified and simple. Finally, the typical numerical examples are shown to illustrate the correctness and effectiveness of the practical technique.


Author(s):  
Zhe Bai ◽  
Liqian Peng

AbstractAlthough projection-based reduced-order models (ROMs) for parameterized nonlinear dynamical systems have demonstrated exciting results across a range of applications, their broad adoption has been limited by their intrusivity: implementing such a reduced-order model typically requires significant modifications to the underlying simulation code. To address this, we propose a method that enables traditionally intrusive reduced-order models to be accurately approximated in a non-intrusive manner. Specifically, the approach approximates the low-dimensional operators associated with projection-based reduced-order models (ROMs) using modern machine-learning regression techniques. The only requirement of the simulation code is the ability to export the velocity given the state and parameters; this functionality is used to train the approximated low-dimensional operators. In addition to enabling nonintrusivity, we demonstrate that the approach also leads to very low computational complexity, achieving up to $$10^3{\times }$$ 10 3 × in run time. We demonstrate the effectiveness of the proposed technique on two types of PDEs. The domain of applications include both parabolic and hyperbolic PDEs, regardless of the dimension of full-order models (FOMs).


Sign in / Sign up

Export Citation Format

Share Document