scholarly journals Climbing Plants: Attachment and the Ascent for Light

2011 ◽  
Vol 21 (5) ◽  
pp. R199-R201 ◽  
Author(s):  
Karl J. Niklas
Keyword(s):  
2010 ◽  
Vol 18 (2) ◽  
pp. 212 ◽  
Author(s):  
Hu Liang ◽  
Li Mingguang ◽  
Li Zhen

2012 ◽  
Vol 39 (10) ◽  
pp. 1757-1771 ◽  
Author(s):  
Rachael V. Gallagher ◽  
Michelle R. Leishman

2018 ◽  
Vol 36 (3) ◽  
pp. 330-340 ◽  
Author(s):  
Adalberto Di Benedetto ◽  
Claudio Galmarini ◽  
Jorge Tognetti

ABSTRACT Climbing Epipremnum aureum plants develop larger leaves than unsupported, hanging plants. This effect may be regarded, in part, as a thigmomorphogenic response, but gravimorphogenetic effect may also be involved, since polar auxin transport is known to be negatively affected in plants with horizontal or hanging stems, which may result in an altered hormone balance at the whole plant level. The present work was aimed at studying how exogenous auxins and cytokinins may influence growth of E. aureum rooted cuttings under different training systems. Rooted cuttings of E. aureum were cultivated either climbing on an upright wooden board or creeping on the glasshouse bench or hanging from a basket. All leaves of each plant were sprayed to run-off at sunset with four indole-3-acetic acid (IAA) doses 7 days after transplanting and one week later, with four benzylaminopurine (BAP) concentrations, rendering 16 hormone combination treatments. The application of IAA or BAP at 50 mg L-1 to creeping and hanging plants significantly promoted growth but, in climbing plants, a negative effect was generally observed. Changes in net assimilation and photosynthetic rates, together with modified allometric coefficients, accounted for these responses. The higher growth promotion by exogenous growth regulators observed in creeping or hanging plants compared to climbing plants, may be interpreted mostly as a gravimorphogenetic response.


2016 ◽  
Vol 3 (1) ◽  
pp. 37-44
Author(s):  
Prasanth K.P ◽  
Sekaran S

Climbing plants differ from self-supporting plants, such as shrubs and trees, in a range of characteristics. The most notable is the mechanical properties of the stem Comparison of the differentiated anatomical structures recorded in ten species of the climbing plants. The plants selected for the present study are Ampelocissus latifolia, (Vitaceae), Lygodium flexuosum (Lygodiaceae), Centrosema virginianum (Fabaceae), Tinospora cordifolia, (Menispermaceae), Wattakakka volubilis (Asclepiadaceae) Cyclea peltata (Menispermaceae), Calycopteris floribunda (Combretaceae) Pothos scandens (Araceae) Ipomoea separia (Convolvulaceae) and Piper nigrum (Piperaceae). The stems of climbing plants are characterized by the scarcity of supporting cells (fibers) and an increase in the diameter of the xylem vessels. The study con firms that they show a greater diversity of organization than other plant life forms. This anatomical radiation couldprobably not exist without the achievement of a wide range of secondary growth processes. Many dicotyledons, notably those with a climbing habit, show interesting secondary structure which differs from the more usual type described, therefore, sometimes termed anomalous. The variant secondary growth isparticularly widespread in tropical climbers. It is speculated that variant growth can increase stem flexibility, protect the phloem, increase storage parenchyma, aid in clinging to supports, limit physical disruption of vascular tissues during twisting and bending, and promote wound healing after girdling.


2008 ◽  
pp. 211-220
Author(s):  
Tom La Dell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document