scholarly journals Linear-time algorithms for three domination-based separation problems in block graphs

2020 ◽  
Vol 281 ◽  
pp. 6-41
Author(s):  
Gabriela R. Argiroffo ◽  
Silvia M. Bianchi ◽  
Yanina Lucarini ◽  
Annegret K. Wagler
2019 ◽  
Vol 19 (07) ◽  
pp. 2050133 ◽  
Author(s):  
Carla Mascia ◽  
Giancarlo Rinaldo

We give a lower bound for the Castelnuovo-Mumford regularity of binomial edge ideals of block graphs by computing the two distinguished extremal Betti numbers of a new family of block graphs, called flower graphs. Moreover, we present linear time algorithms to compute the Castelnuovo–Mumford regularity and the Krull dimension of binomial edge ideals of block graphs.


Author(s):  
Yuya Higashikawa ◽  
Naoki Katoh ◽  
Junichi Teruyama ◽  
Koji Watase

Algorithmica ◽  
2013 ◽  
Vol 71 (2) ◽  
pp. 471-495 ◽  
Author(s):  
Maw-Shang Chang ◽  
Ming-Tat Ko ◽  
Hsueh-I Lu

1996 ◽  
Vol 06 (01) ◽  
pp. 127-136 ◽  
Author(s):  
QIAN-PING GU ◽  
SHIETUNG PENG

In this paper, we give two linear time algorithms for node-to-node fault tolerant routing problem in n-dimensional hypercubes Hn and star graphs Gn. The first algorithm, given at most n−1 arbitrary fault nodes and two non-fault nodes s and t in Hn, finds a fault-free path s→t of length at most [Formula: see text] in O(n) time, where d(s, t) is the distance between s and t. Our second algorithm, given at most n−2 fault nodes and two non-fault nodes s and t in Gn, finds a fault-free path s→t of length at most d(Gn)+3 in O(n) time, where [Formula: see text] is the diameter of Gn. When the time efficiency of finding the routing path is more important than the length of the path, the algorithms in this paper are better than the previous ones.


Sign in / Sign up

Export Citation Format

Share Document