edge ideals
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 79)

H-INDEX

17
(FIVE YEARS 5)

2022 ◽  
Vol 188 ◽  
pp. 105585
Author(s):  
Nursel Erey ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Sara Saeedi Madani
Keyword(s):  

Author(s):  
Davide Bolognini ◽  
Antonio Macchia ◽  
Francesco Strazzanti

AbstractThe cut sets of a graph are special sets of vertices whose removal disconnects the graph. They are fundamental in the study of binomial edge ideals, since they encode their minimal primary decomposition. We introduce the class of accessible graphs as the graphs with unmixed binomial edge ideal and whose cut sets form an accessible set system. We prove that the graphs whose binomial edge ideal is Cohen–Macaulay are accessible and we conjecture that the converse holds. We settle the conjecture for large classes of graphs, including chordal and traceable graphs, providing a purely combinatorial description of Cohen–Macaulayness. The key idea in the proof is to show that both properties are equivalent to a further combinatorial condition, which we call strong unmixedness.


Author(s):  
Arvind Kumar ◽  
S. Selvaraja

Let [Formula: see text] be a finite simple graph and [Formula: see text] denote the corresponding edge ideal in a polynomial ring over a field [Formula: see text]. In this paper, we obtain upper bounds for the Castelnuovo–Mumford regularity of symbolic powers of certain classes of edge ideals. We also prove that for several classes of graphs, the regularity of symbolic powers of their edge ideals coincides with that of their ordinary powers.


Author(s):  
René González‐Martínez
Keyword(s):  

2021 ◽  
Vol 28 (03) ◽  
pp. 415-430
Author(s):  
Carla Mascia ◽  
Giancarlo Rinaldo

We provide the regularity and the Cohen–Macaulay type of binomial edge ideals of Cohen–Macaulay cones, and we show the extremal Betti numbers of some classes of Cohen–Macaulay binomial edge ideals: Cohen–Macaulay bipartite and fan graphs. In addition, we compute the Hilbert–Poincaré series of the binomial edge ideals of some Cohen–Macaulay bipartite graphs.


Author(s):  
Rajib Sarkar

Let [Formula: see text] be a connected graph on the vertex set [Formula: see text]. Then [Formula: see text]. In this paper, we prove that if [Formula: see text] is a unicyclic graph, then the depth of [Formula: see text] is bounded below by [Formula: see text]. Also, we characterize [Formula: see text] with [Formula: see text] and [Formula: see text]. We then compute one of the distinguished extremal Betti numbers of [Formula: see text]. If [Formula: see text] is obtained by attaching whiskers at some vertices of the cycle of length [Formula: see text], then we show that [Formula: see text]. Furthermore, we characterize [Formula: see text] with [Formula: see text], [Formula: see text] and [Formula: see text]. In each of these cases, we classify the uniqueness of the extremal Betti number of these graphs.


Author(s):  
Ajay Kumar ◽  
Pavinder Singh ◽  
Rohit Verma

In this paper, we obtain a combinatorial formula for computing the Betti numbers in the linear strand of edge ideals of bipartite Kneser graphs. We deduce lower and upper bounds for regularity of powers of edge ideals of these graphs in terms of associated combinatorial data and show that the lower bound is attained in some cases. Also, we obtain bounds on the projective dimension of edge ideals of these graphs in terms of combinatorial data.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Nursel Erey ◽  
Takayuki Hibi

Let $I(G)^{[k]}$ denote the $k$th squarefree power of the edge ideal of $G$. When $G$ is a forest, we provide a sharp upper bound for the regularity of $I(G)^{[k]}$ in terms of the $k$-admissable matching number of $G$. For any positive integer $k$, we classify all forests $G$ such that $I(G)^{[k]}$ has linear resolution. We also give a combinatorial formula for the regularity of $I(G)^{[2]}$ for any forest $G$.


10.37236/9887 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Beata Casiday ◽  
Selvi Kara

Let $\mathcal{D}$ be a weighted oriented graph and $I(\mathcal{D})$ be its edge ideal. In this paper, we investigate the Betti numbers of $I(\mathcal{D})$ via upper-Koszul simplicial complexes, Betti splittings and the mapping cone construction. In particular, we provide recursive formulas for the Betti numbers of edge ideals of several classes of weighted oriented graphs. We also identify classes of weighted oriented graphs whose edge ideals have a unique extremal Betti number which allows us to compute the regularity and projective dimension for the identified classes. Furthermore, we characterize the structure of a weighted oriented graph $\mathcal{D}$ on $n$ vertices such that $\textrm{pdim } (R/I(\mathcal{D}))=n$ where $R=k[x_1,\ldots, x_n]$.


Sign in / Sign up

Export Citation Format

Share Document