linear time
Recently Published Documents


TOTAL DOCUMENTS

8542
(FIVE YEARS 1492)

H-INDEX

122
(FIVE YEARS 10)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-82
Author(s):  
Yael Tauman Kalai ◽  
Ran Raz ◽  
Ron D. Rothblum

We construct a 1-round delegation scheme (i.e., argument-system) for every language computable in time t = t ( n ), where the running time of the prover is poly ( t ) and the running time of the verifier is n · polylog ( t ). In particular, for every language in P we obtain a delegation scheme with almost linear time verification. Our construction relies on the existence of a computational sub-exponentially secure private information retrieval ( PIR ) scheme. The proof exploits a curious connection between the problem of computation delegation and the model of multi-prover interactive proofs that are sound against no-signaling (cheating) strategies , a model that was studied in the context of multi-prover interactive proofs with provers that share quantum entanglement, and is motivated by the physical principle that information cannot travel faster than light. For any language computable in time t = t ( n ), we construct a multi-prover interactive proof ( MIP ), that is, sound against no-signaling strategies, where the running time of the provers is poly ( t ), the number of provers is polylog ( t ), and the running time of the verifier is n · polylog ( t ). In particular, this shows that the class of languages that have polynomial-time MIP s that are sound against no-signaling strategies, is exactly EXP . Previously, this class was only known to contain PSPACE . To convert our MIP into a 1-round delegation scheme, we use the method suggested by Aiello et al. (ICALP, 2000), which makes use of a PIR scheme. This method lacked a proof of security. We prove that this method is secure assuming the underlying MIP is secure against no-signaling provers.


2022 ◽  
Vol 23 (2) ◽  
pp. 1-34
Author(s):  
Clemens Kupke ◽  
Dirk Pattinson ◽  
Lutz Schröder

We establish a generic upper bound ExpTime for reasoning with global assumptions (also known as TBoxes) in coalgebraic modal logics. Unlike earlier results of this kind, our bound does not require a tractable set of tableau rules for the instance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that potentially avoids building the entire exponential-sized space of candidate states, and thus offers a basis for practical reasoning. This algorithm still involves frequent fixpoint computations; we show how these can be handled efficiently in a concrete algorithm modelled on Liu and Smolka’s linear-time fixpoint algorithm. Finally, we show that the upper complexity bound is preserved under adding nominals to the logic, i.e., in coalgebraic hybrid logic.


2022 ◽  
Vol 30 (1) ◽  
pp. 189-216
Author(s):  
Jihoon Kim

Abstract This article discusses several documentary films since the 2010s that portray the place and the landscape related to Korea's social reality or a personal or collective memory of its past, classifying their common trope as the “audiovisual turn.” The trope refers to the uses of the poetic and aesthetic techniques to highlight the visual and auditory qualities of the images that mediate the landscape or the place. This article argues that the films’ experiments with these techniques mark formal and epistemological breaks with the expository and participatory modes of the traditional Korean activist documentary, as they create an array of Deleuzian time-images in which a social place or natural landscape is reconfigured as the cinematic space liberated from a linear time and layered with the imbrication of the present and the past. The images, however, are read as updating the activist documentary's commitment to politics and history, as they renew the viewer's sensory and affective awareness of the place and the landscape and thereby render them ruins.


Author(s):  
Viktor Holubec ◽  
Artem Ryabov ◽  
Sarah A. M. Loos ◽  
Klaus Kroy

Abstract Stochastic processes with temporal delay play an important role in science and engineering whenever finite speeds of signal transmission and processing occur. However, an exact mathematical analysis of their dynamics and thermodynamics is available for linear models only. We introduce a class of stochastic delay processes with nonlinear time-local forces and linear time-delayed forces that obey fluctuation theorems and converge to a Boltzmann equilibrium at long times. From the point of view of control theory, such ``equilibrium stochastic delay processes'' are stable and energetically passive, by construction. Computationally, they provide diverse exact constraints on general nonlinear stochastic delay problems and can, in various situations, serve as a starting point for their perturbative analysis. Physically, they admit an interpretation in terms of an underdamped Brownian particle that is either subjected to a time-local force in a non-Markovian thermal bath or to a delayed feedback force in a Markovian thermal bath. We illustrate these properties numerically for a setup familiar from feedback cooling and point out experimental implications.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ahmad B. Hassanat ◽  
Ahmad S. Tarawneh ◽  
Samer Subhi Abed ◽  
Ghada Awad Altarawneh ◽  
Malek Alrashidi ◽  
...  

Since most classifiers are biased toward the dominant class, class imbalance is a challenging problem in machine learning. The most popular approaches to solving this problem include oversampling minority examples and undersampling majority examples. Oversampling may increase the probability of overfitting, whereas undersampling eliminates examples that may be crucial to the learning process. We present a linear time resampling method based on random data partitioning and a majority voting rule to address both concerns, where an imbalanced dataset is partitioned into a number of small subdatasets, each of which must be class balanced. After that, a specific classifier is trained for each subdataset, and the final classification result is established by applying the majority voting rule to the results of all of the trained models. We compared the performance of the proposed method to some of the most well-known oversampling and undersampling methods, employing a range of classifiers, on 33 benchmark machine learning class-imbalanced datasets. The classification results produced by the classifiers employed on the generated data by the proposed method were comparable to most of the resampling methods tested, with the exception of SMOTEFUNA, which is an oversampling method that increases the probability of overfitting. The proposed method produced results that were comparable to the Easy Ensemble (EE) undersampling method. As a result, for solving the challenge of machine learning from class-imbalanced datasets, we advocate using either EE or our method.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Tailong Xiao ◽  
Jianping Fan ◽  
Guihua Zeng

AbstractParameter estimation is a pivotal task, where quantum technologies can enhance precision greatly. We investigate the time-dependent parameter estimation based on deep reinforcement learning, where the noise-free and noisy bounds of parameter estimation are derived from a geometrical perspective. We propose a physical-inspired linear time-correlated control ansatz and a general well-defined reward function integrated with the derived bounds to accelerate the network training for fast generating quantum control signals. In the light of the proposed scheme, we validate the performance of time-dependent and time-independent parameter estimation under noise-free and noisy dynamics. In particular, we evaluate the transferability of the scheme when the parameter has a shift from the true parameter. The simulation showcases the robustness and sample efficiency of the scheme and achieves the state-of-the-art performance. Our work highlights the universality and global optimality of deep reinforcement learning over conventional methods in practical parameter estimation of quantum sensing.


2022 ◽  
Author(s):  
Arman Kheirati Roonizi

<pre>$\ell_2$ and $\ell_1$ trend filtering are two of the most popular denoising algorithms that are widely used in science, engineering, and statistical signal and image processing applications. They are typically treated as separate entities, with the former as a linear time invariant (LTI) filter which is commonly used for smoothing the noisy data and detrending the time-series signals while the latter is a nonlinear filtering method suited for the estimation of piecewise-polynomial signals (\eg, piecewise-constant, piecewise-linear, piecewise-quadratic and \etc) observed in additive white Gaussian noise. In this article, we propose a Kalman filtering approach to design and implement $\ell_2$ and $\ell_1$ trend filtering % (QV and TV regularization) with the aim of teaching these two approaches and explaining their differences and similarities. Hopefully the framework presented in this article will provide a straightforward and unifying platform for understanding the basis of these two approaches. In addition, the material may be useful in lecture courses in signal and image processing, or indeed, it could be useful to introduce our colleagues in signal processing to the application of Kalman filtering in the design of $\ell_2$ and $\ell_1$ trend filtering.</pre>


AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-15
Author(s):  
Athanasios Fragkou ◽  
Avraam Charakopoulos ◽  
Theodoros Karakasidis ◽  
Antonios Liakopoulos

Understanding the underlying processes and extracting detailed characteristics of rivers is critical and has not yet been fully developed. The purpose of this study was to examine the performance of non-linear time series methods on environmental data. Specifically, we performed an analysis of water level measurements, extracted from sensors, located on specified stations along the Nestos River (Greece), with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA) methods. A more detailed inspection with the sliding windows (epoqs) method was applied on the Recurrence Rate, Average Diagonal Line and Trapping Time parameters, with results showing phase transitions providing useful information about the dynamics of the system. The suggested method seems to be promising for the detection of the dynamical transitions that can characterize distinct time windows of the time series and reveals information about the changes in state within the whole time series. The results will be useful for designing the energy policy investments of producers and also will be helpful for dam management assessment as well as government energy policy.


Algorithmica ◽  
2022 ◽  
Author(s):  
Boris Klemz ◽  
Günter Rote

AbstractA bipartite graph $$G=(U,V,E)$$ G = ( U , V , E ) is convex if the vertices in V can be linearly ordered such that for each vertex $$u\in U$$ u ∈ U , the neighbors of u are consecutive in the ordering of V. An induced matchingH of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and mweighted edges, an induced matching of maximum total weight can be computed in $$O(n+m)$$ O ( n + m ) time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex $$u\in U$$ u ∈ U the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in $$O(n+m)$$ O ( n + m ) time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of $$O(n^2)$$ O ( n 2 ) (Brandstädt et al. in Theor. Comput. Sci. 381(1–3):260–265, 2007. 10.1016/j.tcs.2007.04.006). The weighted case has not been considered before.


Sign in / Sign up

Export Citation Format

Share Document