Fault-tolerant strong Menger (edge) connectivity of arrangement graph

2020 ◽  
Vol 287 ◽  
pp. 53-61
Author(s):  
Pingshan Li ◽  
Min Xu
2021 ◽  
Vol 6 (12) ◽  
pp. 13210-13221
Author(s):  
Yanling Wang ◽  
◽  
Shiying Wang

<abstract><p>This paper studies the edge-fault-tolerant strong Menger edge connectivity of $ n $-dimensional bubble-sort graph $ B_{n} $. We give the values of faulty edges that $ B_{n} $ can tolerant when $ B_{n} $ is strongly Menger edge connected under two conditions. When there are $ (n-3) $ faulty edges removed from $ B_{n} $, the $ B_{n} $ network is still working and it is strongly Menger edge connected. When the condition of any vertex in $ B_{n} $ has at least two neighbors is imposed, the number of faulty edges that can removed from $ B_{n} $ is $ (2n-6) $ when $ B_{n} $ is also strongly Menger edge connected. And two special cases are used to illustrate the correctness of the conclusions. The conclusions can help improve the reliability of the interconnection networks.</p></abstract>


Author(s):  
Pingshan Li ◽  
Rong Liu ◽  
Xianglin Liu

The Cayley graph generated by a transposition tree [Formula: see text] is a class of Cayley graphs that contains the star graph and the bubble sort graph. A graph [Formula: see text] is called strongly Menger (SM for short) (edge) connected if each pair of vertices [Formula: see text] are connected by [Formula: see text] (edge)-disjoint paths, where [Formula: see text] are the degree of [Formula: see text] and [Formula: see text] respectively. In this paper, the maximally edge-fault-tolerant and the maximally vertex-fault-tolerant of [Formula: see text] with respect to the SM-property are found and thus generalize or improve the results in [19, 20, 22, 26] on this topic.


Author(s):  
Rong Liu ◽  
Pingshan Li

A graph [Formula: see text] is called strongly Menger edge connected (SM-[Formula: see text] for short) if the number of disjoint paths between any two of its vertices equals the minimum degree of these two vertices. In this paper, we focus on the maximally edge-fault-tolerant of the class of BC-networks (contain hypercubes, twisted cubes, Möbius cubes, crossed cubes, etc.) concerning the SM-[Formula: see text] property. Under the restricted condition that each vertex is incident with at least three fault-free edges, we show that even if there are [Formula: see text] faulty edges, all BC-networks still have SM-[Formula: see text] property and the bound [Formula: see text] is sharp.


Author(s):  
Mei-Mei Gu ◽  
Jou-Ming Chang ◽  
Rong-Xia Hao

Abstract A connected graph $G$ is called strongly Menger (edge) connected if for any two distinct vertices $x,y$ of $G$, there are $\min \{\textrm{deg}_G(x), \textrm{deg}_G(y)\}$ internally disjoint (edge disjoint) paths between $x$ and $y$. Motivated by parallel routing in networks with faults, Oh and Chen (resp., Qiao and Yang) proposed the (fault-tolerant) strong Menger (edge) connectivity as follows. A graph $G$ is called $m$-strongly Menger (edge) connected if $G-F$ remains strongly Menger (edge) connected for an arbitrary vertex set $F\subseteq V(G)$ (resp. edge set $F\subseteq E(G)$) with $|F|\leq m$. A graph $G$ is called $m$-conditional strongly Menger (edge) connected if $G-F$ remains strongly Menger (edge) connected for an arbitrary vertex set $F\subseteq V(G)$ (resp. edge set $F\subseteq E(G)$) with $|F|\leq m$ and $\delta (G-F)\geq 2$. In this paper, we consider strong Menger (edge) connectedness of the augmented $k$-ary $n$-cube $AQ_{n,k}$, which is a variant of $k$-ary $n$-cube $Q_n^k$. By exploring the topological proprieties of $AQ_{n,k}$, we show that $AQ_{n,3}$ (resp. $AQ_{n,k}$, $k\geq 4$) is $(4n-9)$-strongly (resp. $(4n-8)$-strongly) Menger connected for $n\geq 4$ (resp. $n\geq 2$) and $AQ_{n,k}$ is $(4n-4)$-strongly Menger edge connected for $n\geq 2$ and $k\geq 3$. Moreover, we obtain that $AQ_{n,k}$ is $(8n-10)$-conditional strongly Menger edge connected for $n\geq 2$ and $k\geq 3$. These results are all optimal in the sense of the maximum number of tolerated vertex (resp. edge) faults.


Sign in / Sign up

Export Citation Format

Share Document