edge disjoint
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 56)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Yuan Si ◽  
Ping Li ◽  
Yuzhi Xiao ◽  
Jinxia Liang

For a vertex set [Formula: see text] of [Formula: see text], we use [Formula: see text] to denote the maximum number of edge-disjoint Steiner trees of [Formula: see text] such that any two of such trees intersect in [Formula: see text]. The generalized [Formula: see text]-connectivity of [Formula: see text] is defined as [Formula: see text]. We get that for any generalized Petersen graph [Formula: see text] with [Formula: see text], [Formula: see text] when [Formula: see text]. We give the values of [Formula: see text] for Petersen graph [Formula: see text], where [Formula: see text], and the values of [Formula: see text] for generalized Petersen graph [Formula: see text], where [Formula: see text] and [Formula: see text].


Author(s):  
Pingshan Li ◽  
Rong Liu ◽  
Xianglin Liu

The Cayley graph generated by a transposition tree [Formula: see text] is a class of Cayley graphs that contains the star graph and the bubble sort graph. A graph [Formula: see text] is called strongly Menger (SM for short) (edge) connected if each pair of vertices [Formula: see text] are connected by [Formula: see text] (edge)-disjoint paths, where [Formula: see text] are the degree of [Formula: see text] and [Formula: see text] respectively. In this paper, the maximally edge-fault-tolerant and the maximally vertex-fault-tolerant of [Formula: see text] with respect to the SM-property are found and thus generalize or improve the results in [19, 20, 22, 26] on this topic.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Victor Campos ◽  
Raul Lopes ◽  
Andrea Marino ◽  
Ana Silva

A temporal digraph ${\cal G}$ is a triple $(G, \gamma, \lambda)$ where $G$ is a digraph, $\gamma$ is a function on $V(G)$ that tells us the time stamps when a vertex is active, and $\lambda$ is a function on $E(G)$ that tells for each $uv\in E(G)$ when $u$ and $v$ are linked. Given a static digraph $G$, and a subset $R\subseteq V(G)$, a spanning branching with root $R$ is a subdigraph of $G$ that has exactly one path from $R$ to each $v\in V(G)$. In this paper, we consider the temporal version of Edmonds' classical result about the problem of finding $k$ edge-disjoint spanning branchings respectively rooted in given $R_1,\cdots,R_k$. We introduce and investigate different definitions of spanning branchings, and of edge-disjointness in the context of temporal digraphs. A branching ${\cal B}$ is vertex-spanning if the root is able to reach each vertex $v$ of $G$ at some time where $v$ is active, while it is temporal-spanning if each $v$ can be reached from the root at every time where $v$ is active. On the other hand, two branchings ${\cal B}_1$ and ${\cal B}_2$ are edge-disjoint if they do not use the same edge of $G$, and are temporal-edge-disjoint if they can use the same edge of $G$ but at different times. This lead us to four definitions of disjoint spanning branchings and we prove that, unlike the static case, only one of these can be computed in polynomial time, namely the temporal-edge-disjoint temporal-spanning branchings problem, while the other versions are $\mathsf{NP}$-complete, even under very strict assumptions. 


Author(s):  
R. Montgomery ◽  
A. Pokrovskiy ◽  
B. Sudakov

AbstractA typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs $$2n+1$$ 2 n + 1 times into the complete graph $$K_{2n+1}$$ K 2 n + 1 . In this paper, we prove this conjecture for large n.


2021 ◽  
Vol 300 ◽  
pp. 1-8
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

2021 ◽  
Vol 299 ◽  
pp. 74-81
Author(s):  
Jiang Zhou ◽  
Changjiang Bu ◽  
Hong-Jian Lai
Keyword(s):  

2021 ◽  
Author(s):  
Yu Qian ◽  
Baolei Cheng ◽  
Jianxi Fan ◽  
Yifeng Wang ◽  
Ruofan Jiang

2021 ◽  
pp. 2142002
Author(s):  
Miaomiao Zhuo ◽  
Qinqin Li ◽  
Baoyindureng Wu ◽  
Xinhui An

In this paper, we consider the concept of the average edge-connectivity [Formula: see text] of a graph [Formula: see text], defined to be the average, over all pairs of vertices, of the maximum number of edge-disjoint paths connecting these vertices. Kim and O previously proved that [Formula: see text] for any connected cubic graph on [Formula: see text] vertices. We refine their result by showing that [Formula: see text] We also characterize the graphs where equality holds.


Sign in / Sign up

Export Citation Format

Share Document