scholarly journals On ag-fold jointm-spotty Lee weight enumerator

2013 ◽  
Vol 313 (20) ◽  
pp. 2150-2161
Author(s):  
Anuradha Sharma ◽  
Amit K. Sharma
Keyword(s):  
1982 ◽  
Vol 32 (3) ◽  
pp. 405-406
Author(s):  
Donald Y Goldberg ◽  
Anita E Solow
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jie Geng ◽  
Huazhang Wu ◽  
Patrick Solé

<p style='text-indent:20px;'>This paper mainly study <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes. A Gray map from <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{Z}_{2}^{\alpha}\times\mathbb{Z}_{4}^{\beta}[u] $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{Z}_{4}^{\alpha+2\beta} $\end{document}</tex-math></inline-formula> is defined, and we prove that is a weight preserving and distance preserving map. A MacWilliams-type identity between the Lee weight enumerator of a <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive code and its dual is proved. Some properties of one-weight <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes and two-weight projective <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes are discussed. As main results, some construction methods for one-weight and two-weight <inline-formula><tex-math id="M8">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes are studied, meanwhile several examples are presented to illustrate the methods.</p>


2014 ◽  
Vol 93 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Minjia Shi ◽  
Lou Chen
Keyword(s):  

10.37236/7155 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Stefka Bouyuklieva ◽  
Masaaki Harada ◽  
Akihiro Munemasa

It is known that there is no extremal singly even self-dual $[n,n/2,d]$ code with minimal shadow for $(n,d)=(24m+2,4m+4)$, $(24m+4,4m+4)$, $(24m+6,4m+4)$, $(24m+10,4m+4)$ and $(24m+22,4m+6)$. In this paper, we study singly even self-dual codes with minimal shadow having minimum weight $d-2$ for these $(n,d)$. For $n=24m+2$, $24m+4$ and $24m+10$, we show that the weight enumerator of a singly even self-dual $[n,n/2,4m+2]$ code with minimal shadow is uniquely determined and we also show that there is no singly even self-dual $[n,n/2,4m+2]$ code with minimal shadow for $m \ge 155$, $m \ge 156$ and $m \ge 160$, respectively. We demonstrate that the weight enumerator of a singly even self-dual code with minimal shadow is not uniquely determined for parameters $[24m+6,12m+3,4m+2]$ and $[24m+22,12m+11,4m+4]$.


2016 ◽  
Vol 30 (2) ◽  
pp. 484-493 ◽  
Author(s):  
Minjia Shi ◽  
Yong Luo ◽  
Patrick Solé
Keyword(s):  

2019 ◽  
Vol 257 ◽  
pp. 12-18 ◽  
Author(s):  
Adel Alahmadi ◽  
Michel Deza ◽  
Mathieu Dutour-Sikirić ◽  
Patrick Solé
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document