An efficient shape optimization method based on FEM and B-spline curves and shaping a torque converter clutch disk

2004 ◽  
Vol 40 (13-14) ◽  
pp. 1803-1815 ◽  
Author(s):  
S Hyun ◽  
C Kim ◽  
J.H Son ◽  
S.H Shin ◽  
Y.S Kim
Author(s):  
Andreas Bartold ◽  
Franz Joos

This paper presents the development and application of an automated optimization method for aerodynamic design of centrifugal impellers. The algorithm used for the optimization is an evolutionary algorithm. Within this method the shape of the centrifugal impeller is described using B-Spline curves. The method introduced is used for redesigning an existing impeller with regard to maximization of the isentropic efficiency at a fixed operating point. Here the isentropic efficiency is calculated using the solution of a compressible three-dimensional Reynolds-averaged Navier-Stokes solver. The presentation will show that the method presented provides a new design that outperforms the original impeller with respect to the particular objective and demonstrates its usefulness.


Author(s):  
Cunfu Wang ◽  
Songtao Xia ◽  
Xilu Wang ◽  
Xiaoping Qian

The paper presents an isogeometric shape optimization method that is based on Bézier triangles. Bézier triangles are used to represent both the geometry and physical fields. For a given physical domain defined by B-spline boundary, triangular Bézier parameterization can be automatically generated. This shape optimization method is thus applicable to structures of complex topology. Due to the use of B-spline parameterization of the boundary, the optimized shape can be compactly represented with a relatively small number of optimization variables. In order to ensure mesh validity during shape optimization, we adopt a bi-level mesh representation, where the coarse mesh is used to maintain mesh quality through positivity of Jacobian ordinates of the Bézier triangles. The fine mesh is used in isogeometric analysis for numerical accuracy. Numerical examples are presented to demonstrate the efficacy of the proposed method.


Author(s):  
Antonio Caputi ◽  
Miri Weiss Cohen ◽  
Caterina Rizzi ◽  
Davide Russo

This paper presents a novel design methodology, which combines topology and shape optimization to define material distribution in the structural design of a truss. Firstly, in order to identify the best layout, the topology optimization process in the design domain is carried out by applying the BESO (Bidirectional Evolutionary Structural Optimization) method. In this approach, the low energy elements are eliminated from an initial mesh, and a new geometry is constructed. This new geometry consists of a set of elements with a higher elastic energy. This results in a new division of material providing different zones, some subjected to higher stress and others containing less elastic energy. Moreover, the elements of the final mesh are re-arranged and modified, considering the distribution of tension. This new arrangement is constructed by aligning and rotating the original mesh elements coherently to the principal directions. In the Shape Optimization stage, the resulting TO (Topology Optimization) geometry is refined. A process of replacing the tabular mesh is performed by rearranging the remaining elements. The vertices of the mesh are set as control polygon vertices and used as reference to define the NURBS (Non-Uniform Rational B-Spline) curves. This provides a parametric representation of the boundaries, outlining the high elastic energy zones. The final stage is the optimization of the continuous and analytically defined NURBS curve outlining the solid material domain. The Shape Optimization is carried out applying a gradient-based optimization method.


2021 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Kyungjung Cha ◽  
Seungnam Kim

A comprehensive method which determines the most efficient propeller blade shapes for a given axisymmetric hull to travel at a desired speed, is presented. A nonlinear optimization method is used to design the blade, the shape of which is defined by a 3-D B-spline polygon, with the coordinates of the B-spline control points being the parameters to be optimized for maximum propeller efficiency, for given effective wake and propeller thrust. The performance of the propeller within the optimization scheme is assessed by a vortex-lattice method (VLM). To account fully for the hull/propeller interaction, the effective wake to the propeller and the hull resistance are determined by analyzing the designed propeller geometry by the VLM, coupled with a Reynolds-Averaged Navier-Stokes (RANS) solver. The optimization method re-designs the optimum blade with the updated effective wake and propeller thrust (taken to be equal to the updated hull resistance), and the procedure continues until convergence of the propeller performance. The current approach does not require knowledge of the wake fraction or the thrust deduction factor, both of which must be estimated a priori in traditional propeller design. The method is applied for a given hull to travel at a desired speed, and the optimum blades are designed for various combinations of propeller diameter and RPM, in the case of open and ducted propellers with provided duct shapes. The effects of the propeller diameter and RPM on the designed propeller thrust, torque, propeller efficiency, and required power are presented and compared with each other in the case of open and ducted propellers. The present approach is shown to provide guidance on the design of propulsors for underwater vehicles, and is applicable to the design of propulsors for surface ships.


1992 ◽  
Vol 26 (1) ◽  
pp. 177-190 ◽  
Author(s):  
N. Dyn ◽  
D. Levin ◽  
I. Yad-Shalom

Sign in / Sign up

Export Citation Format

Share Document