Simulation of stable tearing crack growth events using the CZM approach with an explicit solver

2014 ◽  
Vol 81 ◽  
pp. 32-37 ◽  
Author(s):  
Xin Chen ◽  
Xiaomin Deng ◽  
Michael A. Sutton
Author(s):  
Philippa L. Moore ◽  
Menno Hoekstra ◽  
Alex Pargeter

Abstract Hydrogen is well known to have a detrimental influence on the ductility of low alloy steels, reducing the fracture toughness. Standard test methods to characterize fracture toughness of steels in terms of ductile tearing resistance curves have not been developed to account for any hydrogen-driven contribution to the crack extension, Δa. Simply plotting J or CTOD against Δa is not necessarily appropriate for defining the initiation fracture toughness for tests performed in a hydrogen-charging environment. This paper explores a method to further analyse experimental data collected during fracture toughness tests, which allows the contribution of plasticity (i.e. when blunting precedes ductile tearing) to be considered separately from the initiation of crack extension (which could be by stable tearing and/or by hydrogen-driven crack extension). The principle is based on the assumption that a crack growing by a hydrogen-driven mechanism in a quasi-static fracture mechanics test performed in environment may not be associated with significant ductility in the plastic zone (which would accompany crack growth by stable tearing). The analytical method presented in this paper compares the different points of deviation from linear behavior of the components of J, to isolate the effects of ductility within the plastic zone from pure crack extension. In this way, the point of crack initiation can be defined in order to determine the relevant initiation fracture toughness; whether by blunting and stable tearing, or by hydrogen-driven crack growth. This approach offers a screening method which is illustrated using examples of fracture mechanics specimens tested in environments of varying severity (air, seawater with cathodic protection, and sour service). This method can be used to identify the relevant definition of initiation fracture toughness while allowing for a combination of ductile tearing, hydrogen-driven crack extension, or both, to be present during the test.


2010 ◽  
Vol 2 (1) ◽  
pp. 1515-1521
Author(s):  
Mohd Fairuz Ab Rahman ◽  
Reza D. Mohammed ◽  
Xiaobo Yu ◽  
Qianchu Liu ◽  
Graham Clark

Author(s):  
Xiaomin Deng ◽  
Michael A. Sutton

This paper provides a review of findings of a comprehensive research effort by the authors and collaborators in the area of experiments, analysis and simulation of mixed-mode ductile fracture. Topics include mixed-mode Arcan stable tearing tests, the mixed-mode CTOD fracture criterion and its basis, normalization of ductile crack tip fields, ductile failure envelope, crack tunneling and slanting, effects of stress constraint, custom 2D and 3D mixed-mode crack growth simulation codes, and simulations of mixed-mode stable tearing crack growth tests.


1999 ◽  
Vol 64 (3) ◽  
pp. 291-304 ◽  
Author(s):  
Xiaomin Deng ◽  
J.C. Newman
Keyword(s):  

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Jianzheng Zuo ◽  
Xiaomin Deng ◽  
Michael A. Sutton ◽  
Chin-Shan Cheng

Crack tunneling is a crack growth feature often seen in stable tearing crack growth tests on specimens made of ductile materials and containing through-thickness cracks with initially straight crack fronts. As a specimen is loaded monotonically, the midsection of the crack front will advance first, which will be followed by crack growth along the rest of the crack front, leading to the formation of a thumbnail shaped crack-front profile. From the viewpoint of fracture mechanics, crack tunneling will occur if the operating fracture criterion is met first in the midsection of the crack front, which may be due to a higher fracture driving force and∕or a lower fracture toughness in the midsection. A proper understanding of this fracture behavior is important to the development of a three-dimensional fracture criterion for general stable tearing crack growth in ductile materials. In this paper, the phenomenon of crack tunneling during stable tearing crack growth in a single-edge crack specimen is investigated by considering the effect of stress constraint on the fracture toughness. Crack growth in the specimen under nominally Mode I loading conditions is considered. In this case, crack tunneling occurs while the initially flat crack surface (which is normal to the specimen’s lateral surfaces) evolves into a final slanted fracture surface. A mixed-mode crack tip opening displacement (CTOD) fracture criterion and a custom three-dimensional (3D) fracture simulation code, CRACK3D, are used to analyze the crack tunneling event (but not crack slanting) in the specimen. Results of this investigation suggest that the critical CTOD value (which is the fracture toughness) has a clear dependence on the crack-front stress constraint Am (the constraint measure in this work is the stress triaxiality, which is the ratio of the mean normal stress to the von Mises effective stress). For simplicity, this dependence can be approximated by a straight line within the range of stress constraint values found, with the toughness decreasing as the constraint increases. It is found that crack tunneling in this case is mainly the result of a higher stress constraint (hence a lower fracture toughness) in the midsection of the crack front. Details of the crack growth simulation and other findings of this study will also be presented.


Sign in / Sign up

Export Citation Format

Share Document