scholarly journals Effect of lunar gravity models on Chang'E-2 orbit determination using VLBI tracking data

2016 ◽  
Vol 7 (6) ◽  
pp. 406-415
Author(s):  
Erhu Wei ◽  
Xuechuan Li ◽  
Shuanggen Jin ◽  
Jingnan Liu
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Young-Rok Kim ◽  
Young-Joo Song ◽  
Jonghee Bae ◽  
Bang-Yeop Kim

We examine the influence of the lunar gravity model on the orbit determination (OD) of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.


2012 ◽  
Vol 55 (3) ◽  
pp. 514-522 ◽  
Author(s):  
PeiJia Li ◽  
XiaoGong Hu ◽  
Yong Huang ◽  
GuangLi Wang ◽  
DongRong Jiang ◽  
...  

2005 ◽  
Vol 53 (13) ◽  
pp. 1331-1340 ◽  
Author(s):  
S. Goossens ◽  
P.N.A.M. Visser ◽  
B.A.C. Ambrosius

1995 ◽  
Vol 16 (12) ◽  
pp. 89-92
Author(s):  
F.J. Lerch ◽  
C.E. Doll ◽  
J.A. Marshall ◽  
S.B. Luthcke ◽  
R.G. Williamson ◽  
...  

2020 ◽  
Vol 636 ◽  
pp. A45
Author(s):  
Jianguo Yan ◽  
Shanhong Liu ◽  
Chi Xiao ◽  
Mao Ye ◽  
Jianfeng Cao ◽  
...  

Context. Chinese lunar missions have grown in number over the last ten years, with an increasing focus on radio science investigations. In previous work, we estimated two lunar gravity field models, CEGM01 and CEGM02. The recently lunar mission, Chang’e 5T1, which had an orbital inclination between 18 and 68 degrees, and collected orbital tracking data continually for two years, made an improved gravity field model possible. Aims. Our aim was to estimate a new lunar gravity field model up to degree and order 100, CEGM03, and a new tidal Love number based on the Chang’e 5T1 tracking data combined with the historical tracking data used in the solution of CEGM02. The new model makes use of tracking data with this particular inclination, which has not been used in previous gravity field modeling. Methods. The solution for this new model was based on our in-house software, LUGREAS. The gravity spectrum power, post-fit residuals after precision orbit determination (POD), lunar surface gravity anomalies, correlations between parameters, admittance and coherence with topography model, and accuracy of POD were analyzed to validate the new CEGM03 model. Results. We analyzed the tracking data of the Chang’e 5T1 mission and estimated the CEGM03 lunar gravity field model. We found that the two-way Doppler measurement accuracy reached 0.2 mm s−1 with 10 s integration time. The error spectrum shows that the formal error for CEGM03 was at least reduced by about 2 times below the harmonic degree of 20, when compared to the CEGM02 model. The admittance and correlation of gravity and topography was also improved when compared to the correlations for the CEGM02 model. The lunar potential Love number k2 was estimated to be 0.02430±0.0001 (ten times the formal error). Conclusions. From the model analysis and comparison of the various models, we identified improvements in the CEGM03 model after introducing Chang’e 5T1 tracking data. Moreover, this study illustrates how the low and middle inclination orbits could contribute better accuracy for a low degree of lunar gravity field.


2020 ◽  
Author(s):  
Stefano Bertone ◽  
Daniel Arnold ◽  
Valère Girardin ◽  
Martin Lasser ◽  
Ulrich Meyer ◽  
...  

2010 ◽  
Vol 85 (4) ◽  
pp. 205-228 ◽  
Author(s):  
S. Goossens ◽  
K. Matsumoto ◽  
Q. Liu ◽  
F. Kikuchi ◽  
K. Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document