orbit determination
Recently Published Documents


TOTAL DOCUMENTS

1750
(FIVE YEARS 360)

H-INDEX

42
(FIVE YEARS 6)

GPS Solutions ◽  
2022 ◽  
Vol 26 (2) ◽  
Author(s):  
Grzegorz Bury ◽  
Krzysztof Sośnica ◽  
Radosław Zajdel ◽  
Dariusz Strugarek

AbstractDue to the continued development of the GLONASS satellites, precise orbit determination (POD) still poses a series of challenges. This study examines the impact of introducing the analytical tube-wing model for GLONASS-M and the box-wing model for GLONASS-K in a series of hybrid POD strategies that consider both the analytical model and a series of empirical parameters. We assess the perturbing accelerations acting on GLONASS spacecraft based on the analytical model. All GLONASS satellites are equipped with laser retroreflectors for satellite laser ranging (SLR). We apply the SLR observations for the GLONASS POD in a series of GNSS + SLR combined solutions. The application of the box-wing model significantly improves GLONASS orbits, especially for GLONASS-K, reducing the STD of SLR residuals from 92.6 to 27.6 mm. Although the metadata for all GLONASS-M satellites reveal similar construction characteristics, we found differences in empirical accelerations and SLR offsets not only between GLONASS-M and GLONASS-M+ but also within the GLONASS-M+ series. Moreover, we identify satellites with inferior orbit solutions and check if we can improve them using the analytical model and SLR observations. For GLONASS-M SVN730, the STD of the SLR residuals for orbits determined using the empirical solution is 48.7 mm. The STD diminishes to 41.2 and 37.8 mm when introducing the tube-wing model and SLR observations, respectively. As a result, both the application of the SLR observations and the analytical model significantly improve the orbit solution as well as reduce systematic errors affecting orbits of GLONASS satellites.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Li Yang ◽  
Haote Ruan ◽  
Yunhan Zhang

In recent years, many low-orbit satellites have been widely used in the field of scientific research and national defense in China. In order to meet the demand of high-precision satellite orbit in China’s space, surveying and mapping, and other related fields, navigation satellites are of great significance. The UKF (unscented Kalman filter) method is applied to space targets’ spaceborne GPS autonomous orbit determination. In this paper, the UKF algorithm based on UT transformation is mainly introduced. In view of the situation that the system noise variance matrix is unknown or the dynamic model is not accurate, an adaptive UKF filtering algorithm is proposed. Simulation experiments are carried out with CHAMP satellite GPS data, and the results show that the filtering accuracy and stability are improved, which proves the algorithm’s effectiveness. The experimental results show that the Helmert variance component estimation considering the dynamics model can solve the problem of reasonable weight determination of BDS/GPS observations and effectively weaken the influence of coarse error and improve the accuracy of orbit determination. The accuracy of autonomous orbit determination by spaceborne BDS/GPS is 1.19 m and 2.35 mm/s, respectively.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Zhiyu Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Mainul Hoque ◽  
Liang Wang ◽  
...  

The real-time integer-ambiguity resolution of the carrier-phase observation is one of the most effective approaches to enhance the accuracy of real-time precise point positioning (PPP), kinematic precise orbit determination (KPOD), and reduced-dynamic precise orbit determination (RPOD) for low earth orbit (LEO) satellites. In this study, the integer phase clock (IPC) and wide-lane satellite bias (WSB) products from CNES (Centre National d’Etudes Spatiales) are used to fix ambiguity in real time. Meanwhile, the three models of real-time PPP, KPOD, and RPOD are applied to validate the contribution of ambiguity resolution. Experimental results show that (1) the average positioning accuracy of IGS stations for ambiguity-fixed solutions is improved from about 7.14 to 5.91 cm, with an improvement of around 17% compared to the real-time float PPP solutions, with enhancement in the east-west direction particularly significant, with an improvement of about 29%; (2) the average accuracy of the estimated LEO orbit with ambiguity-fixed solutions in the real-time KPOD and RPOD mode is improved by about 16% and 10%, respectively, with respect to the corresponding mode with the ambiguity-float solutions; (3) the performance of real-time LEO RPOD is better than that of the corresponding KPOD, regardless of fixed- or float-ambiguity solutions. Moreover, the average ambiguity-fixed ratio can reach more than 90% in real-time PPP, KPOD, and RPOD.


2022 ◽  
Author(s):  
John Christian ◽  
Christopher Ertl ◽  
Kenneth Horneman ◽  
Alan Lovell

GPS Solutions ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Youcun Wang ◽  
Min Li ◽  
Kecai Jiang ◽  
Wenwen Li ◽  
Qile Zhao ◽  
...  

Author(s):  
Bingbing Duan ◽  
Urs Hugentobler ◽  
Inga Selmke ◽  
Stefan Marz ◽  
Matthias Killian ◽  
...  

GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Chris Rizos

AbstractDue to an increasing requirement for high accuracy orbital information for low Earth orbit (LEO) satellites, precise orbit determination (POD) of LEO satellites is a topic of growing interest. To assure the safety and reliability of the applications requiring high accuracy LEO orbits in near-real-time, integrity monitoring (IM) is an essential operation of the POD process. In this contribution, the IM strategy for LEO POD in both the kinematic and reduced-dynamic modes is investigated. The overbounding parameters of the signal-in-space range error are investigated for the GPS products provided by the International GNSS Service’s Real-Time Service and the Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis service. Benefiting from the dynamic models used and the improved model strength, the test results based on the data of the LEO satellite GRACE FO-1 show that the average-case mean protection levels (PLs) can be reduced from about 3–4 m in the kinematic mode to about 1 m in the reduced-dynamic mode in the radial, along-track and cross-track directions. The overbounding mean values of the SISRE play the dominant role in the final PLs. In the reduced-dynamic mode and average-case projection, the IM availabilities reach above 99% in the radial, along-track and cross-track directions with the alert limit (AL) set to 2 m. The values are still above 98% with the AL set to 4 m, when the duty cycle of tracking is reduced to 40%, e.g., in the case of power limits for miniature satellites such as CubeSats.


Sign in / Sign up

Export Citation Format

Share Document