Fault diagnosis in discrete time hybrid systems – A case study

2007 ◽  
Vol 177 (5) ◽  
pp. 1290-1308 ◽  
Author(s):  
P BHOWAL ◽  
D SARKAR ◽  
S MUKHOPADHYAY ◽  
A BASU

2002 ◽  
Vol 35 (1) ◽  
pp. 283-288
Author(s):  
D. Sarkar ◽  
P. Bhowal ◽  
A. Basu ◽  
S. Mukhopadhyay


2011 ◽  
Vol 131 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Takahiro Sano ◽  
Yoshiharu Ogawa ◽  
Takaaki Shimonosono ◽  
Tadayuki Wada


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jianyu Long ◽  
Yanyang Zi ◽  
Shaohui Zhang ◽  
...  

AbstractSupervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect, but also detect unknown types of defects.



Author(s):  
Chuan Wang ◽  
Yupeng Liu ◽  
Dongbo Wang ◽  
Guorong Wang ◽  
Dingya Wang ◽  
...  


2020 ◽  
Vol 53 (2) ◽  
pp. 4291-4296
Author(s):  
Brenner S. Rego ◽  
Davide M. Raimondo ◽  
Guilherme V. Raffo




2016 ◽  
Vol 49 (12) ◽  
pp. 1002-1007 ◽  
Author(s):  
B. Maaref ◽  
Z. Simeu Abazi ◽  
H. Dhouibi ◽  
H. Messaoud ◽  
E. Gascard


Sign in / Sign up

Export Citation Format

Share Document