scholarly journals The point variety of quantum polynomial rings

2016 ◽  
Vol 463 ◽  
pp. 10-22 ◽  
Author(s):  
Pieter Belmans ◽  
Kevin De Laet ◽  
Lieven Le Bruyn
2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Mark Skandera ◽  
Justin Lambright

International audience We show that dual canonical basis elements of the quantum polynomial ring in $n^2$ variables can be expressed as specializations of dual canonical basis elements of $0$-weight spaces of other quantum polynomial rings. Our results rely upon the natural appearance in the quantum polynomial ring of Kazhdan-Lusztig polynomials, $R$-polynomials, and certain single and double parabolic generalizations of these. Nous démontrons que des éléments de la base canonique duale de l'anneau quantique des polynômes en $n^2$ variables peuvent s'exprimer en termes des spécialisations d'éléments de la base canonique duale des espaces de poids $0$ d'autres anneaux quantiques. Nos résultats dépendent fortement de l'apparition naturelle des polynômes de Kazhdan-Lusztig, des $R$-polynômes, et de certaines généralisations simplement et doublement paraboliques de ces polynômes dans l'anneau quantique.


2015 ◽  
Vol 43 (5) ◽  
pp. 1877-1897 ◽  
Author(s):  
César Fernando Venegas Ramírez

2014 ◽  
Vol 66 (4) ◽  
pp. 874-901 ◽  
Author(s):  
Viktor Levandovskyy ◽  
Anne V. Shepler

AbstractWe consider finite groups acting on quantum (or skew) polynomial rings. Deformations of the semidirect product of the quantum polynomial ring with the acting group extend symplectic reflection algebras and graded Hecke algebras to the quantum setting over a field of arbitrary characteristic. We give necessary and sufficient conditions for such algebras to satisfy a Poincaré–Birkhoff–Witt property using the theory of noncommutative Gröbner bases. We include applications to the case of abelian groups and the case of groups acting on coordinate rings of quantum planes. In addition, we classify graded automorphisms of the coordinate ring of quantum 3-space. In characteristic zero, Hochschild cohomology gives an elegant description of the Poincaré–Birkhoff–Witt conditions.


2008 ◽  
Vol 319 (10) ◽  
pp. 4199-4221 ◽  
Author(s):  
Heidi Haynal

Sign in / Sign up

Export Citation Format

Share Document