scholarly journals Some results on local cohomology of polynomial and formal power series rings: The one dimensional case

2016 ◽  
Vol 466 ◽  
pp. 184-194
Author(s):  
Pham Hung Quy
2011 ◽  
Vol 31 (1) ◽  
pp. 331-343 ◽  
Author(s):  
Steven T. Dougherty ◽  
Liu Hongwei

2004 ◽  
Vol 2004 (38) ◽  
pp. 2019-2038 ◽  
Author(s):  
J. Leonel Rocha ◽  
J. Sousa Ramos

The purpose of this paper is to present a weighted kneading theory for one-dimensional maps with a hole. We consider extensions of the kneading theory of Milnor and Thurston to expanding discontinuous maps with a hole and introduce weights in the formal power series. This method allows us to derive techniques to compute explicitly the topological entropy, the Hausdorff dimension, and the escape rate.


1989 ◽  
Vol 32 (3) ◽  
pp. 314-319
Author(s):  
Peter Seibt

AbstractDifferentially simple local noetherian Q -algebras are shown to be always (a certain type of) subrings of formal power series rings. The result is established as an illustration of a general theory of differential filtrations and differential completions.


1992 ◽  
Vol 15 (3) ◽  
pp. 499-508
Author(s):  
Mohammad H. Ahmadi

We start with finitely many1's and possibly some0's in between. Then each entry in the other rows is obtained from the Base2sum of the two numbers diagonally above it in the preceding row. We may formulate the game as follows: Defined1,jrecursively for1, a non-negative integer, andjan arbitrary integer by the rules:d0,j={1     for   j=0,k         (I)0   or   1   for   0<j<kd0,j=0   for   j<0   or   j>k              (II)di+1,j=di,j+1(mod2)   for   i≥0.      (III)Now, if we interpret the number of1's in rowias the coefficientaiof a formal power series, then we obtain a growth function,f(x)=∑i=0∞aixi. It is interesting that there are cases for which this growth function factors into an infinite product of polynomials. Furthermore, we shall show that this power series never represents a rational function.


2020 ◽  
Vol 27 (03) ◽  
pp. 495-508
Author(s):  
Ahmed Maatallah ◽  
Ali Benhissi

Let A be a ring. In this paper we generalize some results introduced by Aliabad and Mohamadian. We give a relation between the z-ideals of A and those of the formal power series rings in an infinite set of indeterminates over A. Consider A[[XΛ]]3 and its subrings A[[XΛ]]1, A[[XΛ]]2, and A[[XΛ]]α, where α is an infinite cardinal number. In fact, a z-ideal of the rings defined above is of the form I + (XΛ)i, where i = 1, 2, 3 or an infinite cardinal number and I is a z-ideal of A. In addition, we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients. As a natural result, we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050003
Author(s):  
Abolfazl Tarizadeh

In this paper, the ring of polynomials is studied in a systematic way through the theory of monoid rings. As a consequence, this study provides canonical approaches in order to find easy and rigorous proofs and methods for many facts on polynomials and formal power series; some of them as sample are treated in this paper. Besides the universal properties of the monoid rings and polynomial rings, a universal property for the formal power series rings is also established.


Sign in / Sign up

Export Citation Format

Share Document