Stability of the centers of the symplectic group rings Z[Sp2n(q)]

Author(s):  
Şafak Özden
Keyword(s):  
2019 ◽  
Vol 2019 (3) ◽  
pp. 33-39
Author(s):  
P.V. Danchev
Keyword(s):  

1982 ◽  
Vol 88 ◽  
pp. 17-53 ◽  
Author(s):  
G. van der Geer ◽  
K. Ueno

Around the beginning of this century G. Humbert ([9]) made a detailed study of the properties of compact complex surfaces which can be parametrized by singular abelian functions. A surface parametrized by singular abelian functions is the image under a holomorphic map of a singular abelian surface (i.e. an abelian surface whose endomorphism ring is larger than the ring of rational integers). Humbert showed that the periods of a singular abelian surface satisfy a quadratic relation with integral coefficients and he constructed an invariant D of such a relation with respect to the action of the integral symplectic group on the periods.


1992 ◽  
Vol 45 (3) ◽  
pp. 503-506 ◽  
Author(s):  
R.K. Sharma ◽  
Vikas Bist

Let KG be the group algebra of a group G over a field K of characteristic p > 0. It is proved that the following statements are equivalent: KG is Lie nilpotent of class ≤ p, KG is strongly Lie nilpotent of class ≤ p and G′ is a central subgroup of order p. Also, if G is nilpotent and G′ is of order pn then KG is strongly Lie nilpotent of class ≤ pn and both U(KG)/ζ(U(KG)) and U(KG)′ are of exponent pn. Here U(KG) is the group of units of KG. As an application it is shown that for all n ≤ p+ 1, γn(L(KG)) = 0 if and only if γn(KG) = 0.


1983 ◽  
Vol 11 (22) ◽  
pp. 2519-2525 ◽  
Author(s):  
Chander Kanta Gupta
Keyword(s):  

2019 ◽  
Vol 19 (4) ◽  
pp. 1287-1347 ◽  
Author(s):  
Zheng Liu

We construct the $p$-adic standard $L$-functions for ordinary families of Hecke eigensystems of the symplectic group $\operatorname{Sp}(2n)_{/\mathbb{Q}}$ using the doubling method. We explain a clear and simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group $\operatorname{Sp}(4n)_{/\mathbb{Q}}$, which guarantees the nonvanishing of local zeta integrals and allows us to $p$-adically interpolate the restrictions of the Siegel Eisenstein series to $\operatorname{Sp}(2n)_{/\mathbb{Q}}\times \operatorname{Sp}(2n)_{/\mathbb{Q}}$.


2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650150 ◽  
Author(s):  
Hongdi Huang ◽  
Yuanlin Li ◽  
Gaohua Tang

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection (∗-invariant idempotent). In this paper, we consider the group algebras of the dihedral groups [Formula: see text], and the generalized quaternion groups [Formula: see text] with standard involution ∗. For the non-semisimple group algebra case, we characterize the ∗-cleanness of [Formula: see text] with a prime [Formula: see text], and [Formula: see text] with [Formula: see text], where [Formula: see text] is a commutative local ring. For the semisimple group algebra case, we investigate when [Formula: see text] is ∗-clean, where [Formula: see text] is the field of rational numbers [Formula: see text] or a finite field [Formula: see text] and [Formula: see text] or [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document