scholarly journals Positive solutions of the Dirichlet problem for the prescribed mean curvature equation

2010 ◽  
Vol 249 (7) ◽  
pp. 1674-1725 ◽  
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari
2017 ◽  
Vol 24 (1) ◽  
pp. 113-134 ◽  
Author(s):  
Chiara Corsato ◽  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractWe discuss existence, multiplicity, localisation and stability properties of solutions of the Dirichlet problem associated with the gradient dependent prescribed mean curvature equation in the Lorentz–Minkowski space$\left\{\begin{aligned} \displaystyle{-}\operatorname{div}\biggl{(}\frac{\nabla u% }{\sqrt{1-|\nabla u|^{2}}}\biggr{)}&\displaystyle=f(x,u,\nabla u)&&% \displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega.\end{aligned}\right.$The obtained results display various peculiarities, which are due to the special features of the involved differential operator and have no counterpart for elliptic problems driven by other quasilinear differential operators. This research is also motivated by some recent achievements in the study of prescribed mean curvature graphs in certain Friedmann–Lemaître–Robertson–Walker, as well as Schwarzschild–Reissner–Nordström, spacetimes.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Ruyun Ma ◽  
Lingfang Jiang

We consider the existence of positive solutions of one-dimensional prescribed mean curvature equation−(u′/1+u′2)′=λf(u),0<t<1,u(t)>0,t∈(0,1),u(0)=u(1)=0whereλ>0is a parameter, andf:[0,∞)→[0,∞)is continuous. Further, whenfsatisfiesmax{up,uq}≤f(u)≤up+uq,0<p≤q<+∞, we obtain the exact number of positive solutions. The main results are based upon quadrature method.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Anderson L. A. de Araujo ◽  
Marcelo Montenegro

AbstractWe find a solution of the Dirichlet problem for the prescribed mean curvature equation


Sign in / Sign up

Export Citation Format

Share Document