A note on the exponential inequality for a class of dependent random variables

2011 ◽  
Vol 40 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Soo Hak Sung ◽  
Patchanok Srisuradetchai ◽  
Andrei Volodin
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Guodong Xing ◽  
Shanchao Yang

The exponential inequality for weighted sums of a class of linearly negative quadrant dependent random variables is established, which extends and improves the corresponding ones obtained by Ko et al. (2007) and Jabbari et al. (2009). In addition, we also give the relevant precise asymptotics.


Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1475-1481
Author(s):  
Xuejun Wang ◽  
Shijie Wang ◽  
Shuhe Hu

Let {xn,n ? 1} be a sequence of positive numbers and {?n,n ? 1} be a sequence of nonnegative negatively orthant dependent (NOD) random variables satisfying certain distribution conditions. An exponential inequality for the minimum min1?i?n xi?i is given. In addition, the moment inequalities of the minimum (Ek - min1?i?n|xi?i|p)1/p for nonnegative negatively orthant dependent random variables are established, where p > 0 and k = 1,2,..., n. Our results generalize the corresponding ones for independent random variables to the case of negatively orthant dependent random variables.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


Sign in / Sign up

Export Citation Format

Share Document