Existence and nonexistence of nontrivial solutions for critical biharmonic equations

2021 ◽  
Vol 495 (1) ◽  
pp. 124713
Author(s):  
Qihan He ◽  
Zongyan Lv
Author(s):  
B. B. V. Maia ◽  
O. H. Miyagaki

In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem \[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \] when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$ ) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$ ), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem \[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \] where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.


2021 ◽  
Vol 7 (1) ◽  
pp. 499-517
Author(s):  
Dušan D. Repovš ◽  
◽  
Calogero Vetro ◽  

<abstract><p>We study the behavior of solutions for the parametric equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda &gt;0, $\end{document} </tex-math></disp-formula></p> <p>under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) &gt; 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted versions of $ p $-Laplacian and $ q $-Laplacian. We prove existence and nonexistence of nontrivial solutions, when $ f(z, x) $ asymptotically as $ x \to \pm \infty $ can be resonant. In the studied cases, we adopt a variational approach and use truncation and comparison techniques. When $ \lambda $ is large, we establish the existence of at least three nontrivial smooth solutions with sign information and ordered. Moreover, the critical parameter value is determined in terms of the spectrum of one of the differential operators.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document