scholarly journals The Birkhoff-James orthogonality and norm attainment for multilinear maps

2021 ◽  
Vol 502 (2) ◽  
pp. 125275
Author(s):  
Geunsu Choi ◽  
Sun Kwang Kim
Author(s):  
Ljiljana Arambašić ◽  
Alexander Guterman ◽  
Bojan Kuzma ◽  
Rajna Rajić ◽  
Svetlana Zhilina

Author(s):  
Ljiljana Arambašić ◽  
Alexander Guterman ◽  
Bojan Kuzma ◽  
Rajna Rajić ◽  
Svetlana Zhilina
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Muhua Liu ◽  
Ping Zhang ◽  
Qingtao Wu

Constrained verifiable random functions (VRFs) were introduced by Fuchsbauer. In a constrained VRF, one can drive a constrained key skS from the master secret key sk, where S is a subset of the domain. Using the constrained key skS, one can compute function values at points which are not in the set S. The security of constrained VRFs requires that the VRFs’ output should be indistinguishable from a random value in the range. They showed how to construct constrained VRFs for the bit-fixing class and the circuit constrained class based on multilinear maps. Their construction can only achieve selective security where an attacker must declare which point he will attack at the beginning of experiment. In this work, we propose a novel construction for constrained verifiable random function from bilinear maps and prove that it satisfies a new security definition which is stronger than the selective security. We call it semiadaptive security where the attacker is allowed to make the evaluation queries before it outputs the challenge point. It can immediately get that if a scheme satisfied semiadaptive security, and it must satisfy selective security.


Author(s):  
W. T. Gowers ◽  
L. Milićević

Abstract Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$ . A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$ , $i\not =c$ , the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$ . Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.


2006 ◽  
Vol 49 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Yun Sung Choi ◽  
Domingo Garcia ◽  
Sung Guen Kim ◽  
Manuel Maestre

AbstractIn this paper, we introduce the polynomial numerical index of order $k$ of a Banach space, generalizing to $k$-homogeneous polynomials the ‘classical’ numerical index defined by Lumer in the 1970s for linear operators. We also prove some results. Let $k$ be a positive integer. We then have the following:(i) $n^{(k)}(C(K))=1$ for every scattered compact space $K$.(ii) The inequality $n^{(k)}(E)\geq k^{k/(1-k)}$ for every complex Banach space $E$ and the constant $k^{k/(1-k)}$ is sharp.(iii) The inequalities$$ n^{(k)}(E)\leq n^{(k-1)}(E)\leq\frac{k^{(k+(1/(k-1)))}}{(k-1)^{k-1}}n^{(k)}(E) $$for every Banach space $E$.(iv) The relation between the polynomial numerical index of $c_0$, $l_1$, $l_{\infty}$ sums of Banach spaces and the infimum of the polynomial numerical indices of them.(v) The relation between the polynomial numerical index of the space $C(K,E)$ and the polynomial numerical index of $E$.(vi) The inequality $n^{(k)}(E^{**})\leq n^{(k)}(E)$ for every Banach space $E$.Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on $C(K)$ and the disc algebra are given.


2012 ◽  
Vol 437 (7) ◽  
pp. 1913-1929 ◽  
Author(s):  
Ljiljana Arambašić ◽  
Rajna Rajić
Keyword(s):  

Author(s):  
Craig Gentry ◽  
Sergey Gorbunov ◽  
Shai Halevi
Keyword(s):  

2017 ◽  
Vol 22 (7) ◽  
pp. 2267-2274 ◽  
Author(s):  
Hao Wang ◽  
Debiao He ◽  
Jian Shen ◽  
Zhihua Zheng ◽  
Xiaoyan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document