scholarly journals Some applications of Projective Logarithmic Potentials

Author(s):  
Omar Alehyane ◽  
Saïd Asserda ◽  
Fatima Zahra Assila
Author(s):  
Pierluigi Colli ◽  
Gianni Gilardi ◽  
Jürgen Sprekels

AbstractIn the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers $$A^{2r}$$ A 2 r and $$B^{2\sigma }$$ B 2 σ (in the spectral sense) of general linear operators A and B, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space $$L^2(\Omega )$$ L 2 ( Ω ) , for some bounded and smooth domain $$\Omega \subset {{\mathbb {R}}}^3$$ Ω ⊂ R 3 , and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter $$\sigma $$ σ appearing in the operator $$B^{2\sigma }$$ B 2 σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.


1967 ◽  
Vol 29 ◽  
pp. 229-241 ◽  
Author(s):  
Nobuyuki Ninomiya

In this paper, we shall consider the logarithmic potential where μ is a positive measure in the plane, P and Q are any points and PQ denotes the distance from P to Q. In general, consider the potential of a positive measure μ taken with respect to a kernel K(P, Q) which is a continuous function in P and Q and may be + ∞ for P = Q. A kernel K (P, Q) is said to satisfy the balayage principle if, given any compact set F and any positive measure μ with compact support, there exists a positive measure μ′ supported by F such that K(P, μ′) = K(P, μ) on F with a possible exception of a set of k-capacity zero and K(P, μ′)≦K(P, μ) everywhere. A kernel K(P, Q) is said to satisfy the equilibrium principle if, given any compact set F there exists a positive measure λ supported by F such that K(P, λ) = V (a constant) on F with a possible exception of a set of K-capacity zero and K(p, λ)≦V everywhere.


Sign in / Sign up

Export Citation Format

Share Document