scholarly journals Biases in the prime number race of function fields

2010 ◽  
Vol 130 (4) ◽  
pp. 1048-1055 ◽  
Author(s):  
Byungchul Cha ◽  
Seick Kim
Keyword(s):  
2021 ◽  
pp. 2150062
Author(s):  
Carlos Daniel Reyes-Morales ◽  
Gabriel Villa-Salvador

We give a construction of the genus field for Kummer [Formula: see text]-cyclic extensions of rational congruence function fields, where [Formula: see text] is a prime number. First, we compute the genus field of a field contained in a cyclotomic function field, and then for the general case. This generalizes the result obtained by Peng for a Kummer [Formula: see text]-cyclic extension. Finally, we study the extension [Formula: see text], for [Formula: see text], [Formula: see text] abelian extensions of [Formula: see text].


2014 ◽  
Vol 150 (4) ◽  
pp. 507-522 ◽  
Author(s):  
Fabien Trihan ◽  
Seidai Yasuda

AbstractLet $A/K$ be an abelian variety over a function field of characteristic $p>0$ and let $\ell $ be a prime number ($\ell =p$ allowed). We prove the following: the parity of the corank $r_\ell $ of the $\ell $-discrete Selmer group of $A/K$ coincides with the parity of the order at $s=1$ of the Hasse–Weil $L$-function of $A/K$. We also prove the analogous parity result for pure $\ell $-adic sheaves endowed with a nice pairing and in particular for the congruence Zeta function of a projective smooth variety over a finite field. Finally, we prove that the full Birch and Swinnerton-Dyer conjecture is equivalent to the Artin–Tate conjecture.


2013 ◽  
Vol 09 (05) ◽  
pp. 1249-1262 ◽  
Author(s):  
VÍCTOR BAUTISTA-ANCONA ◽  
MARTHA RZEDOWSKI-CALDERÓN ◽  
GABRIEL VILLA-SALVADOR

We give a construction of genus fields for Kummer cyclic l-extensions of rational congruence function fields, l a prime number. First we find this genus field for a field contained in a cyclotomic function field using Leopoldt's construction by means of Dirichlet characters and the Hilbert class field defined by Rosen. The general case follows from this. This generalizes the result obtained by Peng for a cyclic extension of degree l.


2016 ◽  
Vol 49 (5) ◽  
pp. 1239-1277 ◽  
Author(s):  
Byungchul Cha ◽  
Daniel Fiorilli ◽  
Florent Jouve

Sign in / Sign up

Export Citation Format

Share Document