tate conjecture
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Salvatore Floccari

AbstractWe show that the André motive of a hyper-Kähler variety X over a field $$K \subset {\mathbb {C}}$$ K ⊂ C with $$b_2(X)>6$$ b 2 ( X ) > 6 is governed by its component in degree 2. More precisely, we prove that if $$X_1$$ X 1 and $$X_2$$ X 2 are deformation equivalent hyper-Kähler varieties with $$b_2(X_i)>6$$ b 2 ( X i ) > 6 and if there exists a Hodge isometry $$f:H^2(X_1,{\mathbb {Q}})\rightarrow H^2(X_2,{\mathbb {Q}})$$ f : H 2 ( X 1 , Q ) → H 2 ( X 2 , Q ) , then the André motives of $$X_1$$ X 1 and $$X_2$$ X 2 are isomorphic after a finite extension of K, up to an additional technical assumption in presence of non-trivial odd cohomology. As a consequence, the Galois representations on the étale cohomology of $$X_1$$ X 1 and $$X_2$$ X 2 are isomorphic as well. We prove a similar result for varieties over a finite field which can be lifted to hyper-Kähler varieties for which the Mumford–Tate conjecture is true.


Author(s):  
Yang-Hui He ◽  
Kyu-Hwan Lee ◽  
Thomas Oliver

2021 ◽  
Vol 157 (9) ◽  
pp. 1964-2000
Author(s):  
Xinyi Yuan

The main result of this paper concerns the positivity of the Hodge bundles of abelian varieties over global function fields. As applications, we obtain some partial results on the Tate–Shafarevich group and the Tate conjecture of surfaces over finite fields.


Author(s):  
Salvatore Floccari

AbstractWe study the Mumford–Tate conjecture for hyperkähler varieties. We show that the full conjecture holds for all varieties deformation equivalent to either an Hilbert scheme of points on a K3 surface or to O’Grady’s ten dimensional example, and all of their self-products. For an arbitrary hyperkähler variety whose second Betti number is not 3, we prove the Mumford–Tate conjecture in every codimension under the assumption that the Künneth components in even degree of its André motive are abelian. Our results extend a theorem of André.


Author(s):  
Trajan Hammonds ◽  
Casimir Kothari ◽  
Noah Luntzlara ◽  
Steven J. Miller ◽  
Jesse Thorner ◽  
...  

Let [Formula: see text] be Ramanujan’s tau function, defined by the discriminant modular form [Formula: see text] (this is the unique holomorphic normalized cuspidal newform of weight 12 and level 1). Lehmer’s conjecture asserts that [Formula: see text] for all [Formula: see text]; since [Formula: see text] is multiplicative, it suffices to study primes [Formula: see text] for which [Formula: see text] might possibly be zero. Assuming standard conjectures for the twisted symmetric power [Formula: see text]-functions associated to [Formula: see text] (including GRH), we prove that if [Formula: see text], then [Formula: see text] a substantial improvement on the implied constant in previous work. To achieve this, under the same hypotheses, we prove an explicit version of the Sato–Tate conjecture for primes in arithmetic progressions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kazuhiro Ito ◽  
Tetsushi Ito ◽  
Teruhisa Koshikawa

Abstract We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of $K3$ surfaces over finite fields. We prove that every $K3$ surface of finite height over a finite field admits a characteristic $0$ lifting whose generic fibre is a $K3$ surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a $K3$ surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a $K3$ surface of finite height and construct characteristic $0$ liftings of the $K3$ surface preserving the action of tori in the algebraic group. We obtain these results for $K3$ surfaces over finite fields of any characteristics, including those of characteristic $2$ or $3$ .


Author(s):  
Salvatore Floccari ◽  
Lie Fu ◽  
Ziyu Zhang

We investigate how the motive of hyper-Kähler varieties is controlled by weight-2 (or surface-like) motives via tensor operations. In the first part, we study the Voevodsky motive of singular moduli spaces of semistable sheaves on K3 and abelian surfaces as well as the Chow motive of their crepant resolutions, when they exist. We show that these motives are in the tensor subcategory generated by the motive of the surface, provided that a crepant resolution exists. This extends a recent result of Bülles to the O’Grady-10 situation. In the non-commutative setting, similar results are proved for the Chow motive of moduli spaces of (semi-)stable objects of the K3 category of a cubic fourfold. As a consequence, we provide abundant examples of hyper-Kähler varieties of O’Grady-10 deformation type satisfying the standard conjectures. In the second part, we study the André motive of projective hyper-Kähler varieties. We attach to any such variety its defect group, an algebraic group which acts on the cohomology and measures the difference between the full motive and its weight-2 part. When the second Betti number is not 3, we show that the defect group is a natural complement of the Mumford–Tate group inside the motivic Galois group, and that it is deformation invariant. We prove the triviality of this group for all known examples of projective hyper-Kähler varieties, so that in each case the full motive is controlled by its weight-2 part. As applications, we show that for any variety motivated by a product of known hyper-Kähler varieties, all Hodge and Tate classes are motivated, the motivated Mumford–Tate conjecture 7.3 holds, and the André motive is abelian. This last point completes a recent work of Soldatenkov and provides a different proof for some of his results.


Sign in / Sign up

Export Citation Format

Share Document