smooth variety
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 1-29
Author(s):  
LUCA RIZZI ◽  
FRANCESCO ZUCCONI

Abstract Let $f\colon X\to B$ be a semistable fibration where X is a smooth variety of dimension $n\geq 2$ and B is a smooth curve. We give the structure theorem for the local system of the relative $1$ -forms and of the relative top forms. This gives a neat interpretation of the second Fujita decomposition of $f_*\omega _{X/B}$ . We apply our interpretation to show the existence, up to base change, of higher irrational pencils and on the finiteness of the associated monodromy representations under natural Castelnuovo-type hypothesis on local subsystems. Finally, we give a criterion to have that X is not of Albanese general type if $B=\mathbb {P}^1$ .


2021 ◽  
pp. 2150092
Author(s):  
R. S. Carvalho ◽  
J. J. Nuño-Ballesteros ◽  
B. Oréfice-Okamoto ◽  
J. N. Tomazella

We show that a family of isolated complete intersection singularities (ICIS) with constant total Milnor number has no coalescence of singularities. This extends a well-known result of Gabriélov, Lazzeri and Lê for hypersurfaces. We use A’Campo’s theorem to see that the Lefschetz number of the generic monodromy of the ICIS is zero when the ICIS is singular. We give a pair applications for families of functions on ICIS which extend also some known results for functions on a smooth variety.


Author(s):  
Maria Gioia Cifani ◽  
Alice Cuzzucoli ◽  
Riccardo Moschetti

AbstractLet X be an irreducible, reduced complex projective hypersurface of degree d. A point P not contained in X is called uniform if the monodromy group of the projection of X from P is isomorphic to the symmetric group $$S_d$$ S d . We prove that the locus of non-uniform points is finite when X is smooth or a general projection of a smooth variety. In general, it is contained in a finite union of linear spaces of codimension at least 2, except possibly for a special class of hypersurfaces with singular locus linear in codimension 1. Moreover, we generalise a result of Fukasawa and Takahashi on the finiteness of Galois points.


2020 ◽  
Vol 72 (4) ◽  
pp. 537-550
Author(s):  
Yuichiro Hoshi
Keyword(s):  

Author(s):  
Dmitry Kubrak ◽  
Roman Travkin

Abstract “Even more so is the word ‘crystalline’, a glacial and impersonal concept of his which disdains viewing existence from a single portion of time and space” Eileen Myles, “The Importance of Being Iceland” For a smooth variety $X$ over an algebraically closed field of characteristic $p$ to a differential 1-form $\alpha $ on the Frobenius twist $X^{\textrm{(1)}}$ one can associate an Azumaya algebra ${{\mathcal{D}}}_{X,\alpha }$, defined as a certain central reduction of the algebra ${{\mathcal{D}}}_X$ of “crystalline differential operators” on $X$. For a resolution of singularities $\pi :X\to Y$ of an affine variety $Y$, we study for which $\alpha $ the class $[{{\mathcal{D}}}_{X,\alpha }]$ in the Brauer group $\textrm{Br}(X^{\textrm{(1)}})$ descends to $Y^{\textrm{(1)}}$. In the case when $X$ is symplectic, this question is related to Fedosov quantizations in characteristic $p$ and the construction of noncommutative resolutions of $Y$. We prove that the classes $[{{\mathcal{D}}}_{X,\alpha }]$ descend étale locally for all $\alpha $ if ${{\mathcal{O}}}_Y\widetilde{\rightarrow }\pi _\ast{{\mathcal{O}}}_X$ and $R^{1}\pi _*\mathcal O_X = R^2\pi _*\mathcal O_X =0$. We also define a certain class of resolutions, which we call resolutions with conical slices, and prove that for a general reduction of a resolution with conical slices in characteristic $0$ to an algebraically closed field of characteristic $p$ classes $[{{\mathcal{D}}}_{X,\alpha }]$ descend to $Y^{\textrm{(1)}}$ globally for all $\alpha $. Finally we give some examples; in particular, we show that Slodowy slices, Nakajima quiver varieties, and hypertoric varieties are resolutions with conical slices.


2018 ◽  
Vol 2020 (21) ◽  
pp. 7829-7856 ◽  
Author(s):  
Francesca Carocci ◽  
Zak Turčinović

Abstract We show how blowing up varieties in base loci of linear systems gives a procedure for creating new homological projective duals from old. Starting with a homological projective (HP) dual pair $X,Y$ and smooth orthogonal linear sections $X_L,Y_L$, we prove that the blowup of $X$ in $X_L$ is naturally HP dual to $Y_L$. The result also holds true when $Y$ is a noncommutative variety or just a category. We extend the result to the case where the base locus $X_L$ is a multiple of a smooth variety and the universal hyperplane has rational singularities; here the HP dual is a weakly crepant categorical resolution of singularities of $Y_L$. Finally we give examples where, starting with a noncommutative $Y$, the above process nevertheless gives geometric HP duals.


2018 ◽  
Vol 16 (1) ◽  
pp. 437-446
Author(s):  
Ruimei Gao ◽  
Qun Dai ◽  
Zhe Li

AbstractLet V be a smooth variety. A hypersurface arrangement 𝓜 in V is a union of smooth hypersurfaces, which locally looks like a union of hyperplanes. We say 𝓜 is free if all these local models can be chosen to be free hyperplane arrangements. In this paper, we use Saito’s criterion to study the freeness of hypersurface arrangements consisting of hyperplanes and spheres, and construct the bases for the derivation modules explicitly.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter includes some additional material on homotopies. In particular, for a smooth variety V, there exists an “inflation” homotopy, taking a simple point to the generic type of a small neighborhood of that point. This homotopy has an image that is properly a subset of unit vector V, and cannot be understood directly in terms of definable subsets of V. The image of this homotopy retraction has the merit of being contained in unit vector U for any dense Zariski open subset U of V. The chapter also proves the continuity of functions and homotopies using continuity criteria and constructs inflation homotopies before proving GAGA type results for connectedness. Additional results regarding the Zariski topology are given.


Author(s):  
Ahmed Abbes ◽  
Michel Gros ◽  
Takeshi Tsuji

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches. It mainly focuses on generalized representations of the fundamental group that are p-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The book shows the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the book contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored.


Sign in / Sign up

Export Citation Format

Share Document