scholarly journals Biophysical and structural investigation of the regulation of human GTP Cyclohydrolase I by its regulatory protein GFRP

2020 ◽  
pp. 107691
Author(s):  
Rebecca Ebenhoch ◽  
Margit Bauer ◽  
Dirk Reinert ◽  
Anja Kersting ◽  
Sylwia Huber ◽  
...  
2020 ◽  
Vol 117 (50) ◽  
pp. 31838-31849
Author(s):  
Rebecca Ebenhoch ◽  
Simone Prinz ◽  
Susann Kaltwasser ◽  
Deryck J. Mills ◽  
Robert Meinecke ◽  
...  

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1−GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.


2000 ◽  
Vol 347 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Beat THÖNY ◽  
Günter AUERBACH ◽  
Nenad BLAU

Tetrahydrobiopterin (BH4) cofactor is essential for various processes, and is present in probably every cell or tissue of higher organisms. BH4 is required for various enzyme activities, and for less defined functions at the cellular level. The pathway for the de novo biosynthesis of BH4 from GTP involves GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase. Based on gene cloning, recombinant expression, mutagenesis studies, structural analysis of crystals and NMR studies, reaction mechanisms for the biosynthetic and recycling enzymes were proposed. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I, the expression of which may be under the control of cytokine induction. In the liver at least, activity is inhibited by BH4, but stimulated by phenylalanine through the GTP cyclohydrolase I feedback regulatory protein. The enzymes that depend on BH4 are the phenylalanine, tyrosine and tryptophan hydroxylases, the latter two being the rate-limiting enzymes for catecholamine and 5-hydroxytryptamine (serotonin) biosynthesis, all NO synthase isoforms and the glyceryl-ether mono-oxygenase. On a cellular level, BH4 has been found to be a growth or proliferation factor for Crithidia fasciculata, haemopoietic cells and various mammalian cell lines. In the nervous system, BH4 is a self-protecting factor for NO, or a general neuroprotecting factor via the NO synthase pathway, and has neurotransmitter-releasing function. With regard to human disease, BH4 deficiency due to autosomal recessive mutations in all enzymes (except sepiapterin reductase) have been described as a cause of hyperphenylalaninaemia. Furthermore, several neurological diseases, including Dopa-responsive dystonia, but also Alzheimer's disease, Parkinson's disease, autism and depression, have been suggested to be a consequence of restricted cofactor availability.


1997 ◽  
Vol 272 (15) ◽  
pp. 9690-9696 ◽  
Author(s):  
Toshie Yoneyama ◽  
John M. Brewer ◽  
Kazuyuki Hatakeyama

2001 ◽  
Vol 312 (5) ◽  
pp. 1051-1057 ◽  
Author(s):  
Gerd Bader ◽  
Susanne Schiffmann ◽  
Anja Herrmann ◽  
Markus Fischer ◽  
Markus Gütlich ◽  
...  

2002 ◽  
Vol 277 (12) ◽  
pp. 10129-10133 ◽  
Author(s):  
Ernst R. Werner ◽  
Soheyl Bahrami ◽  
Regine Heller ◽  
Gabriele Werner-Felmayer

Sign in / Sign up

Export Citation Format

Share Document